Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 3, Pages 45–64 (Mi da731)  

This article is cited in 1 scientific paper (total in 1 paper)

On the maximum cardinality of a $k$-zero-free set in an Abelian group

V. G. Sargsyan

Lomonosov Moscow State University, Leninskie gory, 119991 Moscow, Russia
Full-text PDF (310 kB) Citations (1)
References:
Abstract: A subset $A$ of elements of an Abelian group $G$ is called $k$-zero-free if $x_1+\dots+x_{k-1}$ does not belong to $A$ for any $x_1,\dots,x_{k-1}\in A$. A $k$-zero-free set $A$ in the group $G$ is called maximal if for any $x\in G\setminus A$ the set $A\cup\{x\}$ is not $k$-zero-free. We study the maximum cardinality of a $k$-zero-free set in an Abelian group $G$. In particular, the maximum cardinality of a $k$-zero-free arithmetic progression in a cyclic group $Z_n$ is determined and upper and lower bounds on the maximum cardinality of a $k$-zero-free set in an Abelian group $G$ are improved. We describe the structure of $k$-zero-free maximal sets $A$ in the cyclic group $Z_n$ if $\mathrm{gcd}(n,k)=1$ and $k|A|\ge n+1$. Bibliogr. 8.
Keywords: $k$-zero-free set, group of residues, nontrivial subgroup, coset, arithmetic progression.
Received: 18.07.2012
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 4, Pages 574–587
DOI: https://doi.org/10.1134/S1990478913040121
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. G. Sargsyan, “On the maximum cardinality of a $k$-zero-free set in an Abelian group”, Diskretn. Anal. Issled. Oper., 20:3 (2013), 45–64; J. Appl. Industr. Math., 7:4 (2013), 574–587
Citation in format AMSBIB
\Bibitem{Sar13}
\by V.~G.~Sargsyan
\paper On the maximum cardinality of a~$k$-zero-free set in an Abelian group
\jour Diskretn. Anal. Issled. Oper.
\yr 2013
\vol 20
\issue 3
\pages 45--64
\mathnet{http://mi.mathnet.ru/da731}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135743}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 4
\pages 574--587
\crossref{https://doi.org/10.1134/S1990478913040121}
Linking options:
  • https://www.mathnet.ru/eng/da731
  • https://www.mathnet.ru/eng/da/v20/i3/p45
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :142
    References:49
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024