Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 3, Pages 3–25 (Mi da729)  

This article is cited in 3 scientific papers (total in 3 papers)

Steiner triple systems of small rank embedded into perfect binary codes

D. I. Kovalevskayaa, F. I. Solov'evaab, E. S. Filimonovaa

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Full-text PDF (338 kB) Citations (3)
References:
Abstract: Using the switching method, we classify Steiner triple systems $\mathrm{STS}(n)$ of order $n=2^r-1$, $r>3$, and of small rank $r_n$ (which differs by 2 from the rank of the Hamming code of length $n$) embedded into perfect binary codes of length $n$ and of the same rank. The lower and upper bounds for the number of such different $\mathrm{STS}$ are given. We present the description and the lower bound for the number of $\mathrm{STS}(n)$ of rank $r_n$ which are not embedded into perfect binary codes of length $n$ and of the same rank. The embeddability of any $\mathrm{STS}(n)$ of rank $r_n-1$ into a perfect code of length $n$ with the same rank, given by Vasil’ev construction, is proved. Bibliogr. 22.
Keywords: Steiner triple system, perfect binary code, switching, Pasch configuration, $ijk$-component, $i$-component.
Received: 02.08.2012
Revised: 20.03.2013
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 3, Pages 380–395
DOI: https://doi.org/10.1134/S1990478913030113
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: D. I. Kovalevskaya, F. I. Solov'eva, E. S. Filimonova, “Steiner triple systems of small rank embedded into perfect binary codes”, Diskretn. Anal. Issled. Oper., 20:3 (2013), 3–25; J. Appl. Industr. Math., 7:3 (2013), 380–395
Citation in format AMSBIB
\Bibitem{KovSolFil13}
\by D.~I.~Kovalevskaya, F.~I.~Solov'eva, E.~S.~Filimonova
\paper Steiner triple systems of small rank embedded into perfect binary codes
\jour Diskretn. Anal. Issled. Oper.
\yr 2013
\vol 20
\issue 3
\pages 3--25
\mathnet{http://mi.mathnet.ru/da729}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135741}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 3
\pages 380--395
\crossref{https://doi.org/10.1134/S1990478913030113}
Linking options:
  • https://www.mathnet.ru/eng/da729
  • https://www.mathnet.ru/eng/da/v20/i3/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :177
    References:58
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024