Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 1, Pages 93–99 (Mi da721)  

This article is cited in 8 scientific papers (total in 8 papers)

The smallest $k$-enclosing ball problem

V. V. Shenmaier

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (237 kB) Citations (8)
References:
Abstract: The smallest $k$-enclosing ball problem is considered: given a finite set of points in the Euclidean space and an integer $k$, find the smallest circle containing at least $k$ of the points. If the space dimension is fixed, the problem is polynomial-time solvable. In the general case, when the dimension belongs to the data input, the complexity status of the problem is still unknown. Strong NP-hardness of the problem is proved and an approximation scheme (PTAS) that solves this problem with an arbitrary relative error $\varepsilon$ in time $O(n^{1/\varepsilon^2+1}d)$, where $n$ is the number of points in the origin set and $d$ is the space dimension, is presented. Bibliogr. 10.
Keywords: smallest enclosing ball, $k$-enclosing ball, cluster analysis, approximation scheme, approximation algorithm.
Received: 26.07.2012
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 3, Pages 444–448
DOI: https://doi.org/10.1134/S1990478913030186
Bibliographic databases:
Document Type: Article
UDC: 519.176
Language: Russian
Citation: V. V. Shenmaier, “The smallest $k$-enclosing ball problem”, Diskretn. Anal. Issled. Oper., 20:1 (2013), 93–99; J. Appl. Industr. Math., 7:3 (2013), 444–448
Citation in format AMSBIB
\Bibitem{She13}
\by V.~V.~Shenmaier
\paper The smallest $k$-enclosing ball problem
\jour Diskretn. Anal. Issled. Oper.
\yr 2013
\vol 20
\issue 1
\pages 93--99
\mathnet{http://mi.mathnet.ru/da721}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088151}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 3
\pages 444--448
\crossref{https://doi.org/10.1134/S1990478913030186}
Linking options:
  • https://www.mathnet.ru/eng/da721
  • https://www.mathnet.ru/eng/da/v20/i1/p93
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :130
    References:53
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024