|
Diskretnyi Analiz i Issledovanie Operatsii, 2012, Volume 19, Issue 4, Pages 73–85
(Mi da699)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Affine nonsystematic codes
S. A. Malyugin Sobolev Institute of Mathematics, Novosibirsk, Russia
Abstract:
A perfect binary code $C$ of length $n=2^k-1$ is called affine systematic if there exists a $k$-dimensional subspace of $\{0,1\}^n$ such that the intersection of $C$ and any coset with respect to this subspace is a singleton; otherwise $C$ is called affine nonsystematic. We describe the construction of affine nonsystematic codes. Bibliogr. 12.
Keywords:
perfect code, Hamming code, nonsystematic code, affine nonsystematic code, component.
Received: 23.10.2011
Citation:
S. A. Malyugin, “Affine nonsystematic codes”, Diskretn. Anal. Issled. Oper., 19:4 (2012), 73–85; J. Appl. Industr. Math., 6:4 (2012), 451–459
Linking options:
https://www.mathnet.ru/eng/da699 https://www.mathnet.ru/eng/da/v19/i4/p73
|
Statistics & downloads: |
Abstract page: | 324 | Full-text PDF : | 65 | References: | 58 | First page: | 3 |
|