|
Diskretnyi Analiz i Issledovanie Operatsii, 2012, Volume 19, Issue 1, Pages 41–58
(Mi da676)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
Enumeration of bent functions on the minimal distance from the quadratic bent function
N. A. Kolomeec S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
Abstract:
Constructing bent functions on the minimal distance from the quadratic bent function is studied. All such bent functions in $2k$ variables are obtained and it is shown that the number of them is equal to $2^k(2^1+1)\dots(2^k+1)$. A lower bound of the number of bent functions on the minimal distance from a Maiorana–McFarland bent function is given. Tab. 1, bibliogr. 9.
Keywords:
bent function, the minimal distance, quadratic bent function.
Received: 05.04.2011 Revised: 24.09.2011
Citation:
N. A. Kolomeec, “Enumeration of bent functions on the minimal distance from the quadratic bent function”, Diskretn. Anal. Issled. Oper., 19:1 (2012), 41–58; J. Appl. Industr. Math., 6:3 (2012), 306–317
Linking options:
https://www.mathnet.ru/eng/da676 https://www.mathnet.ru/eng/da/v19/i1/p41
|
Statistics & downloads: |
Abstract page: | 471 | Full-text PDF : | 115 | References: | 44 | First page: | 15 |
|