Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2011, Volume 18, Issue 5, Pages 38–53 (Mi da664)  

This article is cited in 4 scientific papers (total in 4 papers)

Thin circulant matrixes and lower bounds on complexity of some Boolean operators

M. I. Grinchuk, I. S. Sergeev

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (308 kB) Citations (4)
References:
Abstract: Lower estimate $\Omega(\frac{k+l}{k^2l^2}N^{2-\frac{k+l+2}{kl}})$ of the maximal possible weight of a $(k,l)$-thin (that is, free of all-ones' submatrixes of size $k\times l$) circulant matrix of order $N$ is proved. The estimate is close to the known estimate corresponding to the class of all $(k,l)$-thin matrixes. As a consequence, new estimates of several complexity measures of Boolean sums' systems and a lower estimate $\Omega(N^2\log^{-6}N)$ of monotone complexity of a Boolean convolution of order $N$ are obtained. Ill. 1, bibliogr. 11.
Keywords: complexity, circulant matrix, thin matrix, Zarankiewicz problem, monotone circuit, rectifier circuit, Boolean sum, Boolean convolution.
Received: 27.01.2011
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: M. I. Grinchuk, I. S. Sergeev, “Thin circulant matrixes and lower bounds on complexity of some Boolean operators”, Diskretn. Anal. Issled. Oper., 18:5 (2011), 38–53
Citation in format AMSBIB
\Bibitem{GriSer11}
\by M.~I.~Grinchuk, I.~S.~Sergeev
\paper Thin circulant matrixes and lower bounds on complexity of some Boolean operators
\jour Diskretn. Anal. Issled. Oper.
\yr 2011
\vol 18
\issue 5
\pages 38--53
\mathnet{http://mi.mathnet.ru/da664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918328}
\zmath{https://zbmath.org/?q=an:1249.68087}
Linking options:
  • https://www.mathnet.ru/eng/da664
  • https://www.mathnet.ru/eng/da/v18/i5/p38
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :130
    References:45
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024