Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2011, Volume 18, Issue 3, Pages 84–88 (Mi da656)  

This article is cited in 2 scientific papers (total in 2 papers)

Analysis of the number of the edges effect on the complexity of the independent set problem solvability

D. S. Malyshevab

a Nizhniy Novgorod Branch of Higher School of Economics, Nizhny Novgorod, Russia
b Nizhniy Novgorod State University, Nizhniy Novgorod, Russia
Full-text PDF (231 kB) Citations (2)
References:
Abstract: We consider classes of connected graphs, defined by functional constraints of the number of the edges depending on the vertex quantity. We show that for any fixed $C$ this problem is polynomially solvable in the class $\bigcup_{n=1}^\infty\{G\colon|V(G)|=n,\,|E(G)|\leq n+C[\log_2(n)]\}$. From the other hand, we prove that this problem isn't polynomial in the class $\bigcup_{n=1}^\infty\{G\colon|V(G)|=n,\,|E(G)|\leq n+f^2(n)\}$, providing $f(n)\colon\mathbb N\to\mathbb N$ is unbounded and nondecreasing and an exponent of $f(n)$ grows faster than a polynomial of $n$. The last result holds if there is no subexponential algorithms for solving of the independent set problem. Bibliogr. 3.
Keywords: computational complexity, independent set problem.
Received: 19.11.2010
Revised: 22.02.2011
English version:
Journal of Applied and Industrial Mathematics, 2012, Volume 6, Issue 1, Pages 97–99
DOI: https://doi.org/10.1134/S1990478912010103
Bibliographic databases:
Document Type: Article
UDC: 519.178
Language: Russian
Citation: D. S. Malyshev, “Analysis of the number of the edges effect on the complexity of the independent set problem solvability”, Diskretn. Anal. Issled. Oper., 18:3 (2011), 84–88; J. Appl. Industr. Math., 6:1 (2012), 97–99
Citation in format AMSBIB
\Bibitem{Mal11}
\by D.~S.~Malyshev
\paper Analysis of the number of the edges effect on the complexity of the independent set problem solvability
\jour Diskretn. Anal. Issled. Oper.
\yr 2011
\vol 18
\issue 3
\pages 84--88
\mathnet{http://mi.mathnet.ru/da656}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883750}
\zmath{https://zbmath.org/?q=an:1249.68089}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 1
\pages 97--99
\crossref{https://doi.org/10.1134/S1990478912010103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857672145}
Linking options:
  • https://www.mathnet.ru/eng/da656
  • https://www.mathnet.ru/eng/da/v18/i3/p84
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :77
    References:63
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024