Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2010, Volume 17, Issue 3, Pages 3–18 (Mi da608)  

This article is cited in 2 scientific papers (total in 2 papers)

On the complexity of linear Boolean operators with thin matrixes

S. B. Gashkov, I. S. Sergeev

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (312 kB) Citations (2)
References:
Abstract: It is considered the problem of construction of a “rectangle-free” Boolean $(n\times n)$-matrix $A$ (i.e. a matrix without ($2\times2$)-submatrixes of all unities) such that the corresponding linear mapping modulo 2 has complexity $o(\nu(A)-n)$ in the basis $\{\oplus\}$, where $\nu(A)$ is the weight of $A$, i.e. the number of unities. (In the paper by Mityagin and Sadovskiy (1965), where the problem was originally studied, “rectangle-free” matrixes were called thin matrixes.) Two constructions for solving the problem are introduced. In the first example $n=p^2$, where $p$ is an odd prime number. The weight of the corresponding matrix $H_p$ is $p^3$ and the complexity of the corresponding linear operator is $O(p^2\log p\log\log p)$. The matrix in the second example has weight $nk$, where $k$ is the cardinality of the Sidon set in $\mathbb Z_n$. One can put $k=\Theta(\sqrt n)$; for some $n$, Sidon sets of cardinality $k\sim\sqrt n$ are known. The complexity of the corresponding linear mapping is $O(n\log n\log\log n)$. Some generalizations of the problem are also considered. Bibl. 29.
Keywords: Boolean circuit, complexity, linear Boolean operator, discrete Fourier transform, finite field, circulant matrix, Sidon set.
Received: 22.10.2009
Bibliographic databases:
Document Type: Article
UDC: 519.7+519.61
Language: Russian
Citation: S. B. Gashkov, I. S. Sergeev, “On the complexity of linear Boolean operators with thin matrixes”, Diskretn. Anal. Issled. Oper., 17:3 (2010), 3–18
Citation in format AMSBIB
\Bibitem{GasSer10}
\by S.~B.~Gashkov, I.~S.~Sergeev
\paper On the complexity of linear Boolean operators with thin matrixes
\jour Diskretn. Anal. Issled. Oper.
\yr 2010
\vol 17
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/da608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2732270}
\zmath{https://zbmath.org/?q=an:1249.68086}
Linking options:
  • https://www.mathnet.ru/eng/da608
  • https://www.mathnet.ru/eng/da/v17/i3/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:618
    Full-text PDF :154
    References:71
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024