|
Diskretnyi Analiz i Issledovanie Operatsii, 2009, Volume 16, Issue 3, Pages 63–73
(Mi da574)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On partitions into perfect $q$-ary codes
F. I. Solov'evaab, A. V. Los'ba a Novosibirsk State University, Novosibirsk, Russia
b S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
Abstract:
For any admissible $N$ we present two constructions of different partitions of the $N$-dimensional vector space over $GF(q)$ into perfect $q$-ary codes, where $q>2$ is a power of a prime. The lower bounds on the number of such partitions are given. Bibl. 12.
Received: 28.10.2008 Revised: 01.04.2009
Citation:
F. I. Solov'eva, A. V. Los', “On partitions into perfect $q$-ary codes”, Diskretn. Anal. Issled. Oper., 16:3 (2009), 63–73; J. Appl. Industr. Math., 4:1 (2010), 136–142
Linking options:
https://www.mathnet.ru/eng/da574 https://www.mathnet.ru/eng/da/v16/i3/p63
|
|