Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2009, Volume 16, Issue 1, Pages 3–36 (Mi da559)  

This article is cited in 11 scientific papers (total in 11 papers)

Structural properties of optimal schedules with preemption

Ph. Baptistea, J. Carliera, A. V. Kononovb, M. Queyrannec, S. V. Sevast'yanovbd, M. Sviridenkoe

a Université de Technologie de Compiégne
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Faculty of Commerce and Business Administration, University of British Columbia
d Novosibirsk State University
e IBM T. J. Watson Research Center
References:
Abstract: Scheduling problems with preemption are considered, where each operation can be interrupted and resumed later without any penalty. We investigate some basic properties of their optimal solutions, such as the existence of an optimal schedule (provided that the set of feasible solutions is nonempty), the existence of such a solution with a finite/polynomial number of interruptions or with interruptions at integral points only. Such theoretical questions are also of practical interest, since structural properties can be used to reduce the search space in a practical scheduling application. In this paper we provide answers to these basic questions for a rather general scheduling model (including, as its special cases, such classical models as parallel machine scheduling, shop scheduling, and resource constrained project scheduling) and for a large variety of objective functions, including nearly all known. For two special cases of objective functions (including, however, all classical functions) we prove the existence of an optimal solution with a special “rational structure”. An important consequence of this property is that the decision versions of these optimization scheduling problems belong to class NP. Bibl. 13.
Keywords: scheduling theory, preemption, optimal schedule.
Received: 13.10.2008
Revised: 12.12.2008
English version:
Journal of Applied and Industrial Mathematics, 2010, Volume 4, Issue 4, Pages 455–474
DOI: https://doi.org/10.1134/S1990478910040010
Bibliographic databases:
UDC: 519.854.2
Language: Russian
Citation: Ph. Baptiste, J. Carlier, A. V. Kononov, M. Queyranne, S. V. Sevast'yanov, M. Sviridenko, “Structural properties of optimal schedules with preemption”, Diskretn. Anal. Issled. Oper., 16:1 (2009), 3–36; J. Appl. Industr. Math., 4:4 (2010), 455–474
Citation in format AMSBIB
\Bibitem{BapCarKon09}
\by Ph.~Baptiste, J.~Carlier, A.~V.~Kononov, M.~Queyranne, S.~V.~Sevast'yanov, M.~Sviridenko
\paper Structural properties of optimal schedules with preemption
\jour Diskretn. Anal. Issled. Oper.
\yr 2009
\vol 16
\issue 1
\pages 3--36
\mathnet{http://mi.mathnet.ru/da559}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543160}
\zmath{https://zbmath.org/?q=an:1249.90066}
\transl
\jour J. Appl. Industr. Math.
\yr 2010
\vol 4
\issue 4
\pages 455--474
\crossref{https://doi.org/10.1134/S1990478910040010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650066330}
Linking options:
  • https://www.mathnet.ru/eng/da559
  • https://www.mathnet.ru/eng/da/v16/i1/p3
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:844
    Full-text PDF :185
    References:87
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024