|
Diskretnyi Analiz i Issledovanie Operatsii, 2008, Volume 15, Issue 4, Pages 44–56
(Mi da540)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata
P. V. Martyugin Ural State University
Abstract:
The notion of carefully synchronizing words for partial finite automata (PFA) is introduced. The careful synchronization of PFA is a natural generalization of the synchronization of the deterministic finite automata. Some lower bounds for the length of the shortest carefully synchronizing words are found for an automaton with a given number of states. It is proven that the maximal length of the shortest reset words for two- and three-letter automata grows faster than any polynomial in the number of states. Tabl. 1, illustr. 3, bibl. 11.
Keywords:
automata, synchronization.
Received: 18.04.2008 Revised: 13.05.2008
Citation:
P. V. Martyugin, “Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata”, Diskretn. Anal. Issled. Oper., 15:4 (2008), 44–56
Linking options:
https://www.mathnet.ru/eng/da540 https://www.mathnet.ru/eng/da/v15/i4/p44
|
Statistics & downloads: |
Abstract page: | 308 | Full-text PDF : | 128 | References: | 41 | First page: | 1 |
|