Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2008, Volume 15, Issue 4, Pages 30–43 (Mi da539)  

This article is cited in 13 scientific papers (total in 13 papers)

The vector subset problem with integer coordinates in Euclidean space with the maximum sum

E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Two problems of selecting a subset of $m$ vectors with the maximum norm of sum from a set of $n$ vectors in Euclidean space $\mathbb R^k$ is considered. It is supposed that the coordinates of the vectors are integer. Using the dynamic programming technique new optimal algorithms are constructed. They have pseudopolynomial complexity, when the dimension $k$ of the vector space is fixed. New algorithms have certain advantages (with respect to earlier known algorithms): the vector subset problem can be solved faster, if $m<(k/2)^k$, and the time complexity is $k^{k-1}$ times less for the problem with an additional restriction on the order of vectors independently of $m$. Bibl. 5.
Keywords: subset selection, Euclidian metric, time complexity, pseudopolynomial algorithm, dynamic programming.
Received: 16.03.2008
Revised: 20.06.2008
English version:
Journal of Applied and Industrial Mathematics, 2009, Volume 3, Issue 3, Pages 343–352
DOI: https://doi.org/10.1134/S1990478909030041
Bibliographic databases:
UDC: 519.8
Language: Russian
Citation: E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov, “The vector subset problem with integer coordinates in Euclidean space with the maximum sum”, Diskretn. Anal. Issled. Oper., 15:4 (2008), 30–43; J. Appl. Industr. Math., 3:3 (2009), 343–352
Citation in format AMSBIB
\Bibitem{GimGlaRyk08}
\by E.~Kh.~Gimadi, Yu.~V.~Glazkov, I.~A.~Rykov
\paper The vector subset problem with integer coordinates in Euclidean space with the maximum sum
\jour Diskretn. Anal. Issled. Oper.
\yr 2008
\vol 15
\issue 4
\pages 30--43
\mathnet{http://mi.mathnet.ru/da539}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543598}
\zmath{https://zbmath.org/?q=an:1249.90171}
\transl
\jour J. Appl. Industr. Math.
\yr 2009
\vol 3
\issue 3
\pages 343--352
\crossref{https://doi.org/10.1134/S1990478909030041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349150916}
Linking options:
  • https://www.mathnet.ru/eng/da539
  • https://www.mathnet.ru/eng/da/v15/i4/p30
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:641
    Full-text PDF :142
    References:72
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024