|
Diskretnyi Analiz i Issledovanie Operatsii, 2008, Volume 15, Issue 3, Pages 65–73
(Mi da535)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Ranking small regular polygons by area and by perimeter
Ch. Audeta, P. Hansenbc, F. Messined a GERAD and Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal
b GERAD and Département des Méthodes Quantitatives de Gestion, École des Hautes Études Commerciales de Montréal
c École des Hautes Études Commerciales de Montréal
d Enseeiht-Irit
Abstract:
From the pentagon onwards, for each odd number $n$ the area of the regular convex polygon with $n$ sides and unit diameter is greater than the area of the similar polygon with $n+1$ sides. Moreover, from the heptagon onwards, the difference in areas decreases when $n$ increases. Similar properties hold for the perimeter. A new proof of the Reinhardt's result is obtained. Tabl. 1, illustr. 1, bibl. 18.
Keywords:
polygon, diameter, area, perimeter.
Received: 10.10.2007 Revised: 03.03.2008
Citation:
Ch. Audet, P. Hansen, F. Messine, “Ranking small regular polygons by area and by perimeter”, Diskretn. Anal. Issled. Oper., 15:3 (2008), 65–73; J. Appl. Industr. Math., 3:1 (2009), 21–27
Linking options:
https://www.mathnet.ru/eng/da535 https://www.mathnet.ru/eng/da/v15/i3/p65
|
|