|
Diskretnyi Analiz i Issledovanie Operatsii, 2008, Volume 15, Issue 3, Pages 11–21
(Mi da530)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On mobile sets in the binary hypercube
Yu. L. Vasil'ev, S. V. Avgustinovich, D. S. Krotov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
If two distance-3 codes have the same neighborhood, then each of them is called a mobile set. In the $(4k+3)$-dimensional binary hypercube there exists a mobile set of cardinality $2\cdot6^k$ that cannot be split into mobile sets of smaller cardinalities or represented as a natural extension of a mobile set of smaller dimension. Bibl. 10.
Keywords:
1-perfect code, Bollean cube, mobile set, $i$-component.
Received: 27.12.2007 Revised: 03.04.2008
Citation:
Yu. L. Vasil'ev, S. V. Avgustinovich, D. S. Krotov, “On mobile sets in the binary hypercube”, Diskretn. Anal. Issled. Oper., 15:3 (2008), 11–21; J. Appl. Industr. Math., 3:2 (2009), 290–296
Linking options:
https://www.mathnet.ru/eng/da530 https://www.mathnet.ru/eng/da/v15/i3/p11
|
|