Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, Ser. 2, 2006, Volume 13, Issue 1, Pages 57–76 (Mi da18)  

This article is cited in 6 scientific papers (total in 6 papers)

A scheme of approximation solution of problem $1|R_j|L_{\max}$

A. A. Lazareva, R. R. Sadykova, S. V. Sevast'yanovb

a Kazan State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (300 kB) Citations (6)
References:
Abstract: The strongly NP-hard scheduling problem of minimizing the maximum lateness on one machine subject to job release dates is under study. We present a general scheme of approximation solution of the problem which is based on searching for a given problem instance another instance, closest to the original in some metric and belonging to a known polynomially solvable class of instances. For a few concrete variants of the scheme (using different polynomially solvable classes of instances) some analytic formulas are found that make it possible, given a problem instance, to compute easily an upper bound on the absolute error of the solution obtained by a chosen scheme.
English version:
Journal of Applied and Industrial Mathematics, 2007, Volume 1, Issue 4, Pages 468–480
DOI: https://doi.org/10.1134/S1990478907040102
Bibliographic databases:
Language: Russian
Citation: A. A. Lazarev, R. R. Sadykov, S. V. Sevast'yanov, “A scheme of approximation solution of problem $1|R_j|L_{\max}$”, Diskretn. Anal. Issled. Oper., Ser. 2, 13:1 (2006), 57–76; J. Appl. Industr. Math., 1:4 (2007), 468–480
Citation in format AMSBIB
\Bibitem{LazSadSev06}
\by A.~A.~Lazarev, R.~R.~Sadykov, S.~V.~Sevast'yanov
\paper A scheme of approximation solution of problem $1|R_j|L_{\max}$
\jour Diskretn. Anal. Issled. Oper., Ser.~2
\yr 2006
\vol 13
\issue 1
\pages 57--76
\mathnet{http://mi.mathnet.ru/da18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2288952}
\zmath{https://zbmath.org/?q=an:1249.90072}
\transl
\jour J. Appl. Industr. Math.
\yr 2007
\vol 1
\issue 4
\pages 468--480
\crossref{https://doi.org/10.1134/S1990478907040102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37249021861}
Linking options:
  • https://www.mathnet.ru/eng/da18
  • https://www.mathnet.ru/eng/da/v13/s2/i1/p57
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :153
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024