Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2024, Volume 31, Issue 2, Pages 28–45
DOI: https://doi.org/10.33048/daio.2024.31.797
(Mi da1343)
 

Stability of vertex covers in a game with finitely many steps

V. L. Beresneva, A. A. Melnikova, S. Yu. Utyupinb

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
References:
Abstract: The eternal vertex cover problem is a version of the graph vertex cover problem that can be represented as a dynamic game between two players (the Attacker and the Defender) with an infinite number of steps. At each step, there is an arrangement of guards over the vertices of the graph forming a vertex cover. When the Attacker attacks one of the graph’s edges, the Defender must move the guard along the attacked edge from one vertex to the other. In addition, the Defender can move any number of other guards from their current vertices to some adjacent ones to obtain a new vertex cover. The Attacker wins if the Defender cannot build a new vertex cover after the attack.
In this paper, we propose a procedure that allows us to answer the question, whether there exists a winning Defender strategy that permits protecting a given vertex cover for a given finite number of steps. To construct the Defender strategy, the problem is represented as a dynamic Stackelberg game in which at each step the interaction of the opposing sides is formalized as a two-level mathematical programming problem. The idea of the procedure is to recursively check the 1-stability of vertex covers obtained as a result of solving lower-level problems and to use some information about the covers already considered. Illustr. 6, bibliogr. 11.
Keywords: dynamic Stackelberg game, eternal vertex cover, graph edge protection, stability check algorithm.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF–2022–0019
Received: 26.02.2024
Revised: 14.03.2024
Accepted: 21.03.2024
English version:
Journal of Applied and Industrial Mathematics, 2024, Volume 18, Issue 2, Pages 206–215
DOI: https://doi.org/10.1134/S1990478924020030
Document Type: Article
UDC: 519.8
Language: Russian
Citation: V. L. Beresnev, A. A. Melnikov, S. Yu. Utyupin, “Stability of vertex covers in a game with finitely many steps”, Diskretn. Anal. Issled. Oper., 31:2 (2024), 28–45; J. Appl. Industr. Math., 18:2 (2024), 206–215
Citation in format AMSBIB
\Bibitem{BerMelUty24}
\by V.~L.~Beresnev, A.~A.~Melnikov, S.~Yu.~Utyupin
\paper Stability of vertex covers in~a~game with~finitely~many~steps
\jour Diskretn. Anal. Issled. Oper.
\yr 2024
\vol 31
\issue 2
\pages 28--45
\mathnet{http://mi.mathnet.ru/da1343}
\crossref{https://doi.org/10.33048/daio.2024.31.797}
\transl
\jour J. Appl. Industr. Math.
\yr 2024
\vol 18
\issue 2
\pages 206--215
\crossref{https://doi.org/10.1134/S1990478924020030}
Linking options:
  • https://www.mathnet.ru/eng/da1343
  • https://www.mathnet.ru/eng/da/v31/i2/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024