Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2024, Volume 31, Issue 1, Pages 19–34
DOI: https://doi.org/10.33048/daio.2024.31.783
(Mi da1337)
 

Definability of relations by semigroups of isotone transformations

A. A. Klyushina, I. B. Kozhukhovbc, D. Yu. Manilovd, A. V. Reshetnikovb

a Cadence Design Systems, Bld. 1 Penrose Dock, Penrose Quay, Cork, T23 KW81, Ireland
b National Research University of Electronic Technology, 1 Shokin Square, 124498 Moscow, Russia
c Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
d ELVEES Research and Development Center, 14 Bld. 14 Konstruktor Lukin Street, 1244660 Zelenograd, Moscow, Russia
References:
Abstract: In 1961, L. M. Gluskin proved that a given set $X$ with an arbitrary nontrivial quasiorder $\rho$ is determined up to isomorphism or anti-isomorphism by the semigroup $T_\rho(X)$ of all isotone transformations of $(X,\rho)$, i. e., the transformations of $X$ preserving $\rho$. Subsequently, L. M. Popova proved a similar statement for the semigroup $P_\rho(X)$ of all partial isotone transformations of $(X,\rho)$; here the relation $\rho$ does not have to be a quasiorder but can be an arbitrary nontrivial reflexive or antireflexive binary relation on the set $X$. In the present paper, under the same constraints on the relation $\rho$, we prove that the semigroup $B_\rho(X)$ of all isotone binary relations (set-valued mappings) of $(X,\rho)$ determines $\rho$ up to an isomorphism or anti-isomorphism as well. In addition, for each of the conditions $T_\rho(X)=T(X)$, $P_\rho(X)=P(X)$, $B_\rho(X)=B(X),$ we enumerate all $n$-ary relations $\rho$ satisfying the given condition. Bibliogr. 8.
Keywords: semigroup of binary relations, isotone transformation.
Funding agency Grant number
Russian Science Foundation 22–11–00052
Received: 28.08.2023
Revised: 06.09.2023
Accepted: 22.09.2023
English version:
Journal of Applied and Industrial Mathematics, 2024, Volume 18, Issue 1, Pages 60–69
DOI: https://doi.org/10.1134/S199047892401006X
Document Type: Article
UDC: 512.534.1
Language: Russian
Citation: A. A. Klyushin, I. B. Kozhukhov, D. Yu. Manilov, A. V. Reshetnikov, “Definability of relations by semigroups of isotone transformations”, Diskretn. Anal. Issled. Oper., 31:1 (2024), 19–34; J. Appl. Industr. Math., 18:1 (2024), 60–69
Citation in format AMSBIB
\Bibitem{KlyKozMan24}
\by A.~A.~Klyushin, I.~B.~Kozhukhov, D.~Yu.~Manilov, A.~V.~Reshetnikov
\paper Definability of relations by semigroups of~isotone transformations
\jour Diskretn. Anal. Issled. Oper.
\yr 2024
\vol 31
\issue 1
\pages 19--34
\mathnet{http://mi.mathnet.ru/da1337}
\crossref{https://doi.org/10.33048/daio.2024.31.783}
\transl
\jour J. Appl. Industr. Math.
\yr 2024
\vol 18
\issue 1
\pages 60--69
\crossref{https://doi.org/10.1134/S199047892401006X}
Linking options:
  • https://www.mathnet.ru/eng/da1337
  • https://www.mathnet.ru/eng/da/v31/i1/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :1
    References:19
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024