Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2023, Volume 30, Issue 4, Pages 91–109
DOI: https://doi.org/10.33048/daio.2023.30.758
(Mi da1335)
 

A complete complexity dichotomy of the edge-coloring problem for all sets of 8-edge forbidden subgraphs

D. S. Malyshevab, O. I. Duginovc

a National Research University “Higher School of Economics”, 25/12 Bolshaya Pechyorskaya Street, 603155 Nizhny Novgorod, Russia
b Lobachevsky Nizhny Novgorod State University, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
c Belarusian State University, 4 Nezavisimost Avenue, 220030 Minsk, Belarus
References:
Abstract: For a given graph, the edge-coloring problem is to minimize the number of colors sufficient to color all the graph edges so that any adjacent edges receive different colors. For all classes defined by sets of forbidden subgraphs, each with 7 edges, the complexity status of this problem is known. In this paper, we obtain a similar result for all sets of 8-edge prohibitions. Illustr. 2, bibliogr. 38.
Keywords: edge-coloring problem, computational complexity, monotone class.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-04001
Russian Science Foundation 21-11-00194
Belarusian Republican Foundation for Fundamental Research Ф21РМ-001
Sections 2 and 3 have been obtained with the support of the Russian Foundation for Basic Research and the Belarusian Republic Foundation for Basic Research (Project 20–51–04001 (F21RM-001)). Sections 4 and 5 have been obtained with the support of the Russian Science Foundation (Project 21–11–00194).
Received: 24.11.2022
Revised: 10.06.2023
Accepted: 22.06.2023
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 4, Pages 791–801
DOI: https://doi.org/10.1134/S1990478923040099
Document Type: Article
UDC: 519.17
Language: Russian
Citation: D. S. Malyshev, O. I. Duginov, “A complete complexity dichotomy of the edge-coloring problem for all sets of 8-edge forbidden subgraphs”, Diskretn. Anal. Issled. Oper., 30:4 (2023), 91–109; J. Appl. Industr. Math., 17:4 (2023), 791–801
Citation in format AMSBIB
\Bibitem{MalDug23}
\by D.~S.~Malyshev, O.~I.~Duginov
\paper A complete complexity dichotomy of~the~edge-coloring problem for~all~sets~of~8-edge forbidden subgraphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2023
\vol 30
\issue 4
\pages 91--109
\mathnet{http://mi.mathnet.ru/da1335}
\crossref{https://doi.org/10.33048/daio.2023.30.758}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 4
\pages 791--801
\crossref{https://doi.org/10.1134/S1990478923040099}
Linking options:
  • https://www.mathnet.ru/eng/da1335
  • https://www.mathnet.ru/eng/da/v30/i4/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :21
    References:18
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024