Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 4, Pages 38–58
DOI: https://doi.org/10.33048/daio.2022.29.730
(Mi da1308)
 

Application of SAT solvers to the problem of finding vector Boolean functions with required cryptographic properties

A. E. Doronina, K. V. Kalginbc

a Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
c Institute of Computational Mathematics and Mathematical Geophysics, 6 Acad. Lavrentyev Avenue, 630090 Novosibirsk, Russia
References:
Abstract: We propose a method for finding an almost perfect nonlinear (APN) function. It is based on translation into SAT-problem and using SAT-solvers. We construct several formulas defining the conditions for finding an APN-function and introduce two representations of the function: Sparse and dense, which are used to describe the problem of finding one-to-one vectorial Boolean functions and APN-functions. We also propose a new method for finding a vectorial APN-function with additional properties. It is based on the idea of representing an unknown vectorial Boolean function as a sum of known APN-functions and two unknown Boolean functions: $\mathbf{G} = \mathbf{F}\oplus \mathbf{c}\cdot g_1 \oplus \mathbf{d}\cdot g_2$, where $\mathbf{F}$ is a known APN-function. It is shown that this method is more efficient than the direct construction of APN-function using SAT for dimensions 6 and 7. As a result, the method described in the work can prove the absence of cubic APN-functions in dimension 7 representable in the form of the sum described above. Tab. 3, bibliogr. 21.
Keywords: SAT-solver, cryptography, Boolean function, APN-function.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0018
This research is carried out within the framework of the state contract of the Sobolev Institute of Mathematics (Project FWNF–2022–0018).
Received: 30.12.2021
Revised: 11.04.2022
Accepted: 15.04.2022
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. E. Doronin, K. V. Kalgin, “Application of SAT solvers to the problem of finding vector Boolean functions with required cryptographic properties”, Diskretn. Anal. Issled. Oper., 29:4 (2022), 38–58
Citation in format AMSBIB
\Bibitem{DorKal22}
\by A.~E.~Doronin, K.~V.~Kalgin
\paper Application of SAT solvers to~the~problem of~finding vector Boolean functions with~required~cryptographic properties
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 4
\pages 38--58
\mathnet{http://mi.mathnet.ru/da1308}
\crossref{https://doi.org/10.33048/daio.2022.29.730}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4523642}
Linking options:
  • https://www.mathnet.ru/eng/da1308
  • https://www.mathnet.ru/eng/da/v29/i4/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :67
    References:26
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024