Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 3, Pages 102–115
DOI: https://doi.org/10.33048/daio.2022.29.741
(Mi da1305)
 

A knapsack problem for rectangles under the gravity center constraints

S. M. Shperlinga, Yu. A. Kochetovb

a Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
References:
Abstract: We have a set of rectangles with pre-defined widths, lengths, and masses and a knapsack with known width and length. Our goal is to select a subset of items and find their packing into the knapsack without overlapping to minimize the total empty space in the knapsack, while deviation of the total gravity center of such items from the geometric center of the knapsack does not exceed some threshold in both axes. We use the item permutations to represent the solutions and the skyline heuristic as a decoding procedure. The gravity center constraint is relaxed and included into the objective function with a penalty. To find the best permutation, we apply the simulated annealing algorithm with swap neighborhood and a special rule for returning into the feasible domain. Computational results for test instances with known optimal solutions are discussed. Tab. 2, illustr. 3, bibliogr. 14.
Keywords: 2D packing, skyline heuristic, gravity center constraint, local search.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0019
The research is carried out within the framework of the state contract of the Sobolev Institute of Mathematics (Project FWNF–2022–0019).
Received: 16.05.2022
Revised: 23.05.2022
Accepted: 24.05.2022
Bibliographic databases:
Document Type: Article
UDC: 519.8+518.25
Language: Russian
Citation: S. M. Shperling, Yu. A. Kochetov, “A knapsack problem for rectangles under the gravity center constraints”, Diskretn. Anal. Issled. Oper., 29:3 (2022), 102–115
Citation in format AMSBIB
\Bibitem{ShpKoc22}
\by S.~M.~Shperling, Yu.~A.~Kochetov
\paper A knapsack problem for rectangles under the~gravity center constraints
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 3
\pages 102--115
\mathnet{http://mi.mathnet.ru/da1305}
\crossref{https://doi.org/10.33048/daio.2022.29.741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4497554}
Linking options:
  • https://www.mathnet.ru/eng/da1305
  • https://www.mathnet.ru/eng/da/v29/i3/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :167
    References:28
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024