Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 2, Pages 62–79
DOI: https://doi.org/10.33048/daio.2022.29.726
(Mi da1298)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field

S. A. Novoselov, Yu. F. Boltnev

Immanuel Kant Baltic Federal University, 14 Aleksandr Nevskii Street, 236041 Kaliningrad, Russia
Full-text PDF (359 kB) Citations (1)
References:
Abstract: We provide explicit formulae for the number of points on a genus $3$ hyperelliptic curve of type $y^2 = x^{7} + a x^{3} + b x$ over a finite field $\mathbb{F}_q$ of characteristic $p > 3$. As an application of these formulae, we prove that point-counting problem on this type of curves has heuristic time complexity of order $O(\log^4{q})$ bit operations. Tab. 2, bibliogr. 27.
Keywords: hyperelliptic curve, point-counting, characteristic polynomial.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075–02–2022–872
The work of the first author is supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075–02–2022–872).
Received: 31.10.2021
Revised: 31.01.2022
Accepted: 07.02.2022
Document Type: Article
UDC: 519.8+518.25
Language: Russian
Citation: S. A. Novoselov, Yu. F. Boltnev, “On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field”, Diskretn. Anal. Issled. Oper., 29:2 (2022), 62–79
Citation in format AMSBIB
\Bibitem{NovBol22}
\by S.~A.~Novoselov, Yu.~F.~Boltnev
\paper On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 2
\pages 62--79
\mathnet{http://mi.mathnet.ru/da1298}
\crossref{https://doi.org/10.33048/daio.2022.29.726}
Linking options:
  • https://www.mathnet.ru/eng/da1298
  • https://www.mathnet.ru/eng/da/v29/i2/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :30
    References:24
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024