Loading [MathJax]/jax/output/CommonHTML/jax.js
Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 1, Pages 74–93
DOI: https://doi.org/10.33048/daio.2022.29.725
(Mi da1294)
 

Properties of Boolean functions with the extremal number of prime implicants

I. P. Chukhrov

Institute of Computer Aided Design RAS, 19/18, Vtoraya Brestskaya Street, 123056 Moscow, Russia
References:
Abstract: The known lower bound for the maximum number of prime implicants (of maximal faces) of a Boolean function differs from the upper bound by O(n) times and is asymptotically attained on a symmetric belt function. To study the properties of extremal functions, subsets of functions are defined that have the minimum and maximum vertices of the maximum faces in the belts n/3±rn and 2n/3±rn, respectively. In this case, the fraction of the number of vertices in each layer is not less than εn and for any such vertex the fraction of the number of maximum faces of the maximum possible number is not less than εn. Conditions are obtained for εn and rn under which a Boolean function from such a subset has the number of prime implicants equal to the maximum value asymptotically or in order of growth of the maximum value. Bibliogr. 10.
Keywords: Boolean function, prime implicant, maximal face, number of prime implicants, asymptotics, order of growth.
Received: 08.09.2021
Revised: 08.09.2021
Accepted: 17.11.2021
Bibliographic databases:
Document Type: Article
UDC: 519.71
Language: Russian
Citation: I. P. Chukhrov, “Properties of Boolean functions with the extremal number of prime implicants”, Diskretn. Anal. Issled. Oper., 29:1 (2022), 74–93
Citation in format AMSBIB
\Bibitem{Chu22}
\by I.~P.~Chukhrov
\paper Properties of Boolean functions with the~extremal number of prime implicants
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 1
\pages 74--93
\mathnet{http://mi.mathnet.ru/da1294}
\crossref{https://doi.org/10.33048/daio.2022.29.725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4412510}
Linking options:
  • https://www.mathnet.ru/eng/da1294
  • https://www.mathnet.ru/eng/da/v29/i1/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :20
    References:59
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025