Loading [MathJax]/jax/output/SVG/config.js
Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 1, Pages 18–32
DOI: https://doi.org/10.33048/daio.2022.29.713
(Mi da1290)
 

Computational complexity of two problems of cognitive data analysis

O. A. Kutnenkoab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
References:
Abstract: The NP-hardness in the strong sense is proved for two problems of cognitive data analysis. One of them is the problem of taxonomy (clustering), i. e. splitting an unclassified sample of objects into disjoint subsets. The other is the problem of sampling a subset of typical representatives of a classified sample which consists of objects of two images. The first problem can be considered as a special case of the second problem, provided that one of the images consists of one object. To obtain a quantitative quality estimate for the set of selected typical representatives of the sample, the function of rival similarity (FRiS function) is used, which assesses the similarity of an object with the closest typical object. Illustr. 1, bibliogr. 18.
Keywords: NP-hardness, taxonomy (clustering), typical object (prototypes) selection, function of rival similarity.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0015
The study is carried out within the framework of the state contract of the Sobolev Institute of Mathematics (Project FWNF–2022–0015).
Received: 26.04.2021
Revised: 02.12.2021
Accepted: 03.12.2021
Bibliographic databases:
Document Type: Article
UDC: 519.87+519.854
Language: Russian
Citation: O. A. Kutnenko, “Computational complexity of two problems of cognitive data analysis”, Diskretn. Anal. Issled. Oper., 29:1 (2022), 18–32
Citation in format AMSBIB
\Bibitem{Kut22}
\by O.~A.~Kutnenko
\paper Computational complexity of two problems of~cognitive~data~analysis
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 1
\pages 18--32
\mathnet{http://mi.mathnet.ru/da1290}
\crossref{https://doi.org/10.33048/daio.2022.29.713}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4412506}
Linking options:
  • https://www.mathnet.ru/eng/da1290
  • https://www.mathnet.ru/eng/da/v29/i1/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :25
    References:48
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025