|
Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 2006, Volume 13, Issue 4, Pages 49–59
(Mi da11)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
A lower bound for the number of transitive perfect codes
V. N. Potapov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
We construct at least $\dfrac1{8n^2\sqrt3}e^{\pi\sqrt{2n/3}}(1+o(1))$ pairwise nonequivalent transitive extended perfect codes of length $4n$ as $n\to\infty$.
Citation:
V. N. Potapov, “A lower bound for the number of transitive perfect codes”, Diskretn. Anal. Issled. Oper., Ser. 1, 13:4 (2006), 49–59; J. Appl. Industr. Math., 1:3 (2007), 373–379
Linking options:
https://www.mathnet.ru/eng/da11 https://www.mathnet.ru/eng/da/v13/s1/i4/p49
|
Statistics & downloads: |
Abstract page: | 454 | Full-text PDF : | 98 | References: | 55 |
|