Loading [MathJax]/jax/output/CommonHTML/config.js
Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2018, Volume 10, Issue 5, Pages 581–604
DOI: https://doi.org/10.20537/2076-7633-2018-10-5-581-604
(Mi crm673)
 

This article is cited in 25 scientific papers (total in 25 papers)

SPECIAL ISSUE

Modern methods of mathematical modeling of blood flow using reduced order methods

S. S. Simakovabc

a Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141701, Russia
b Institute of Numerical Mathematics RAS, 8 Gukina st., Moscow, 119333, Russia
c Sechenov University, 8-2 Trubetskaya st., Moscow, 119991, Russia
References:
Abstract: The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiaccycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models.Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network.The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier–Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model's validation, to the comparing different1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy.It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.
Keywords: mathematical modeling, haemodynamics, blood flow, reduced order models.
Funding agency Grant number
Russian Science Foundation 14-31-00024
This work was supported by the Russian Scientific Foundation, project No. 14-31-00024.
Received: 26.07.2018
Revised: 07.08.2018
Accepted: 21.09.2018
Document Type: Article
UDC: 519.8
Language: Russian
Citation: S. S. Simakov, “Modern methods of mathematical modeling of blood flow using reduced order methods”, Computer Research and Modeling, 10:5 (2018), 581–604
Citation in format AMSBIB
\Bibitem{Sim18}
\by S.~S.~Simakov
\paper Modern methods of mathematical modeling of blood flow using reduced order methods
\jour Computer Research and Modeling
\yr 2018
\vol 10
\issue 5
\pages 581--604
\mathnet{http://mi.mathnet.ru/crm673}
\crossref{https://doi.org/10.20537/2076-7633-2018-10-5-581-604}
Linking options:
  • https://www.mathnet.ru/eng/crm673
  • https://www.mathnet.ru/eng/crm/v10/i5/p581
  • This publication is cited in the following 25 articles:
    1. G. V. Krivovichev, “Raznostnye skhemy rasschepleniya dlya sistemy odnomernykh uravnenii gemodinamiki”, Kompyuternye issledovaniya i modelirovanie, 16:2 (2024), 459–488  mathnet  crossref
    2. V. M. Goloviznin, V. V. Konoplianikov, P. A. Maiorov, S. I. Mukhin, “BALANCE-CHARACTERISTIC METHOD FOR CALCULATING HEMODYNAMICS OF A SINGLE VESSEL”, Differencialʹnye uravneniâ, 60:3 (2024), 418  crossref
    3. S. S. Simakov, “Analysis of the use of one-dimensional network models of blood flow to assess the hemodynamic coefficients in stenosis coronary arteries”, J. Appl. Mech. Tech. Phys., 65:3 (2024), 563–572  mathnet  crossref  crossref  elib
    4. Tatiana K. Dobroserdova, Alexander A. Isaev, Alexander A. Danilov, Sergey S. Simakov, “Junction conditions for one-dimensional network hemodynamic model for total cavopulmonary connection using physically informed deep learning technique”, Russian Journal of Numerical Analysis and Mathematical Modelling, 39:5 (2024), 259  crossref
    5. A. E. Medvedev, A. D. Erokhin, Yu. M. Prikhodko, M. O. Zhulkov, “Modelirovanie dinamiki krovoobrascheniya avtonomnogo serdechno-legochnogo kompleksa”, Matem. biologiya i bioinform., 19:2 (2024), 354–368  mathnet  crossref  elib
    6. A. Ya. Bunicheva, S. I. Mukhin, N. V. Sosnin, A. B. Khrulenko, “Quasi-One-Dimensional Hemodynamics Models”, MoscowUniv.Comput.Math.Cybern., 48:4 (2024), 263  crossref
    7. A. T. Suyundukova, V. P. Demkin, A. V. Mochula, M. O. Gulya, A. N. Maltseva, K. V. Zavadovsky, “State of the art mathematical methods of the coronary blood flow modelling: background and clinical value”, Kardiologiia, 63:3 (2023), 77  crossref
    8. O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matem. biologiya i bioinform., 18:1 (2023), 49–71  mathnet  crossref
    9. I. V. Konyukhov, V. M. Konyukhov, M. G. Khramchenkov, V. D. Bliznyukov, V. M. Sim, “Mathematical Modeling of the Transient Processes in the Blood Flow Along a Vessel at the Presence of Circular Clot”, Lobachevskii J Math, 44:12 (2023), 5332  crossref
    10. Julia Kuyanova, Andrei Dubovoi, Aleksei Fomichev, Dmitrii Khelimskii, Daniil Parshin, “Hemodynamics of vascular shunts: trends, challenges, and prospects”, Biophys Rev, 15:5 (2023), 1287  crossref
    11. Dilafruz Nurjabova, Qulmatova Sayyora, Pardayeva Gulmira, Lecture Notes in Computer Science, 13772, Internet of Things, Smart Spaces, and Next Generation Networks and Systems, 2023, 57  crossref
    12. Yu. O. Kuyanova, A. V. Dubovoi, A. V. Bervitskii, D. V. Parshin, “Numerical optimization of geometric characteristics of vascular anastomosis using swar intelligence methods in neurosurgery”, J. Appl. Mech. Tech. Phys., 63:4 (2022), 606–613  mathnet  mathnet  crossref  crossref
    13. N. I. Aralova, “MATHEMATICAL MODELS OF HUMAN RESPIRATORY AND BLOOD CIRCULATORY SYSTEMS”, Biotechnol. acta, 15:1 (2022), 23  crossref
    14. A.P. Chernyaev, E.R. Pavlyukova, A.Y. Meyerson, “Development of the single ventricle heart mathematical model based on the equation of forced oscillations”, CM, 2021, no. 18, 56  crossref
    15. G V Abramov, D G Abramov, I P Polovinkin, “Oscillogram processing algorithm when monitoring cardiac patients' conditions”, J. Phys.: Conf. Ser., 1902:1 (2021), 012094  crossref
    16. Lorenzo Civilla, Agnese Sbrollini, Laura Burattini, Micaela Morettini, “An integrated lumped-parameter model of the cardiovascular system for the simulation of acute ischemic stroke: description of instantaneous changes in hemodynamics”, MBE, 18:4 (2021), 3993  crossref
    17. O. V. Ilin, “Granichnye usloviya dlya reshetochnykh uravnenii Boltsmana v prilozheniyakh k zadacham gemodinamiki”, Kompyuternye issledovaniya i modelirovanie, 12:4 (2020), 865–882  mathnet  crossref
    18. Sergey S. Simakov, Alexander E. Timofeev, Timur M. Gamilov, Philipp Yu. Kopylov, Dmitry V. Telyshev, Yuri V. Vassilevski, “Analysis of the impact of left ventricular assist devices on the systemic circulation”, Russian Journal of Numerical Analysis and Mathematical Modelling, 35:5 (2020), 295  crossref
    19. Personalized Computational Hemodynamics, 2020, 243  crossref
    20. A. V. Golov, S. S. Simakov, “Personalized Computational Evaluation of Physical Endurance in a Treadmill Test with Increasing Load”, Lobachevskii J Math, 41:12 (2020), 2648  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:546
    Full-text PDF :209
    References:43
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025