Abstract:
Solving the problem of stationary stream distribution for an arbitrary volume-free hydrosystem with a free level can be reduced to determining the extremes of a multi-variable function. Rayleigh function expressed in terms of the hydraulic characteristics of the parts of the system in question is used as such a function. The same function is Lyapunov function when analyzing the stability of the determined stationary operational modes of a hydrosystem using the direct Lyapunov method.
\Bibitem{KasSmi09}
\by N.~V.~Kassina, L.~V.~Smirnov
\paper Mathematical modelling of branched hydraulic systems
\jour Computer Research and Modeling
\yr 2009
\vol 1
\issue 2
\pages 173--179
\mathnet{http://mi.mathnet.ru/crm634}
\crossref{https://doi.org/10.20537/2076-7633-2009-1-2-173-179}
Linking options:
https://www.mathnet.ru/eng/crm634
https://www.mathnet.ru/eng/crm/v1/i2/p173
This publication is cited in the following 2 articles:
I. K. Khujayev, Sh. Khodjaev, T. T. Khodjaev, A. Abdukarimov, INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF APPLIED MECHANICS - APAM-2021, 2637, INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF APPLIED MECHANICS - APAM-2021, 2022, 040012
Yu. N. Zvonareva, Sh. G. Ziganshin, E. V. Izmaylova, A. S. Gavrilov, A. V. Moryashev, M. Kolcun, E.V. Shamsutdinov, Yu.V. Vankov, V.V. Sergeev, “Efficiency of systems of heat supply with introduction of automated individual heating substations”, E3S Web Conf., 124 (2019), 01026