Loading [MathJax]/jax/output/SVG/config.js
Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2011, Volume 3, Issue 2, Pages 177–190
DOI: https://doi.org/10.20537/2076-7633-2011-3-2-177-190
(Mi crm558)
 

This article is cited in 3 scientific papers (total in 3 papers)

ANALYSIS AND MODELING OF COMPLEX LIVING SYSTEMS

The invariance principle of La-Salle and mathematical models for the evolution of microbial populations

Yu. M. Aponin, E. A. Aponina

Institute of mathematical problems of biology RAS, IMPB RAS, Institutskaja str. 4, Pushchino, Moscow Region, 142290, Russia
Full-text PDF (352 kB) Citations (3)
References:
Abstract: A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.
Keywords: evolution of microbial populations, mathematical modeling, Liapunov’s function, bounded globally attracting set.
Received: 11.05.2011
Document Type: Article
UDC: 576.8; 577.3
Language: Russian
Citation: Yu. M. Aponin, E. A. Aponina, “The invariance principle of La-Salle and mathematical models for the evolution of microbial populations”, Computer Research and Modeling, 3:2 (2011), 177–190
Citation in format AMSBIB
\Bibitem{ApoApo11}
\by Yu.~M.~Aponin, E.~A.~Aponina
\paper The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
\jour Computer Research and Modeling
\yr 2011
\vol 3
\issue 2
\pages 177--190
\mathnet{http://mi.mathnet.ru/crm558}
\crossref{https://doi.org/10.20537/2076-7633-2011-3-2-177-190}
Linking options:
  • https://www.mathnet.ru/eng/crm558
  • https://www.mathnet.ru/eng/crm/v3/i2/p177
  • This publication is cited in the following 3 articles:
    1. Ismail Shah, Eiman, Hussam Alrabaiah, Burhanettin Ozdemir, Ateeq ur Rehman Irshad, “Using advanced analysis together with fractional order derivative to investigate a smoking tobacco cancer model”, Results in Physics, 51 (2023), 106700  crossref
    2. K. A. Abdulina, V. N. Starkov, “Kvazistatsionarnyi podkhod v issledovanii rasprostraneniya nasekomykh v lesnoi sisteme”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2015, no. 1, 5–15  mathnet  elib
    3. Yu. M. Aponin, E. A. Aponina, “O matematicheskom modelirovanii evolyutsionnykh protsessov v mire mikrobov”, Matem. biologiya i bioinform., 8:1 (2013), 350–372  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :74
    References:42
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025