Abstract:
The work aims to study the admissibility of the quasi-steady approach application in fluid flow modeling inside of evaporating drops placed on a solid horizontal substrate. Non-steady model has been developed to compare results with a quasi-steady model. For the first time one-dimensional motion equation of fluid in a drop is proposed from a momentum conservation law. We have shown that inward flow is possible on the edge of drop in one-dimensional models. It may be explained by existence of stagnation points.
Citation:
K. S. Kolegov, A. I. Lobanov, “Comparing of a quasi-steady and non-steady mathematical models of fluid flow in evaporating drop”, Computer Research and Modeling, 4:4 (2012), 811–825
\Bibitem{KolLob12}
\by K.~S.~Kolegov, A.~I.~Lobanov
\paper Comparing of a quasi-steady and non-steady mathematical models of fluid flow in evaporating drop
\jour Computer Research and Modeling
\yr 2012
\vol 4
\issue 4
\pages 811--825
\mathnet{http://mi.mathnet.ru/crm531}
\crossref{https://doi.org/10.20537/2076-7633-2012-4-4-811-825}
Linking options:
https://www.mathnet.ru/eng/crm531
https://www.mathnet.ru/eng/crm/v4/i4/p811
This publication is cited in the following 4 articles:
K. S. Kolegov, A. I. Lobanov, “Chislennoe issledovanie massoperenosa v kapelno-plenochnykh sistemakh
s ispolzovaniem regulyarizovannoi raznostnoi skhemy v isparitelnoi litografii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:2 (2018), 344–363
G. E. Skvortsov, E. N. Perevoznikov, “Teoriya neustoichivosti i kriterii khaosa”, Mezhdunar. nauch.-issled. zhurn., 2016, no. 7-4(49), 98–101
K. S. Kolegov, “Sravnenie kvazistatsionarnoi i nestatsionarnoi matematicheskikh modelei techenii v isparyayuscheisya kaple s uchetom vyazkosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 3, 110–122
K. S. Kolegov, “Formirovanie koltsevykh struktur v vysykhayuschei pod shablonom plenke kolloidnogo rastvora”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 24–33