Abstract:
In this paper we consider the properties of the random iterated function systems (RIFS) obtained using a generalization of the Chaos game algorithm. Used for the RIFS simulation R is a free software environment for statistical computing and graphics. The similarity dimension by the polygonal protofractals Z=zj,j=1,2,...,k nonmonotonically depends on the RIFS parameters dS(μ|k) with an extreme value max0<μ<∞dS(μ|k)=−lnkln(1/(1+μ)).
Keywords:
similarity dimension, random iterated function system, Sierpinski polygon.
Received: 02.05.2012
Document Type:
Article
UDC:519.676
Language: Russian
Citation:
P. V. Moskalev, A. G. Buhovetc, “The similarity dimension of the random iterated function system”, Computer Research and Modeling, 4:4 (2012), 681–691
\Bibitem{MosBuh12}
\by P.~V.~Moskalev, A.~G.~Buhovetc
\paper The similarity dimension of the random iterated function system
\jour Computer Research and Modeling
\yr 2012
\vol 4
\issue 4
\pages 681--691
\mathnet{http://mi.mathnet.ru/crm521}
\crossref{https://doi.org/10.20537/2076-7633-2012-4-4-681-691}
Linking options:
https://www.mathnet.ru/eng/crm521
https://www.mathnet.ru/eng/crm/v4/i4/p681
This publication is cited in the following 1 articles:
A Bukhovets, P Moskalev, T Biryuchinskaya, “Construction of a dual attractor for linear randomized systems of iterated functions”, J. Phys.: Conf. Ser., 1902:1 (2021), 012056