This article is cited in 3 scientific papers (total in 3 papers)
MODELS IN PHYSICS AND TECHNOLOGY
Mathematical modeling and optimal control deposition process galvanic coverings in a multianode bath taking into account change concentrations of electrolyte components
Abstract:
This work considers the problem of optimal control galvanic process in multianode bath. The non-stationary mathematical model of galvanic process, which considers change concentrations of electrolyte components, is developed. Demonstrated rationale for the choice of the form to extremal control on example chrome galvanic process in the standard electrolyte.
Keywords:
mathematical model, equation of parabolic type, optimal control, modified method of Ritz, galvanic process, multianode bath, change concentrations of electrolyte components.
Citation:
D. S. Solovjev, Yu. V. Litovka, “Mathematical modeling and optimal control deposition process galvanic coverings in a multianode bath taking into account change concentrations of electrolyte components”, Computer Research and Modeling, 5:2 (2013), 193–203
\Bibitem{SolLit13}
\by D.~S.~Solovjev, Yu.~V.~Litovka
\paper Mathematical modeling and optimal control deposition process galvanic coverings in a multianode bath taking into account change concentrations of electrolyte components
\jour Computer Research and Modeling
\yr 2013
\vol 5
\issue 2
\pages 193--203
\mathnet{http://mi.mathnet.ru/crm391}
\crossref{https://doi.org/10.20537/2076-7633-2013-5-2-193-203}
Linking options:
https://www.mathnet.ru/eng/crm391
https://www.mathnet.ru/eng/crm/v5/i2/p193
This publication is cited in the following 3 articles:
Denis S. Solovjev, Inna A. Solovjeva, Victoria V. Konkina, Yuri V. Litovka, “Improving the uniformity of the coating thickness distribution during electroplating treatment of products using multi anode baths”, Materials Today: Proceedings, 19 (2019), 1895
D S Solovjev, I A Solovjeva, Yu V Litovka, I L Korobova, “About one counterexample of applying method of splitting in modeling of plating processes”, J. Phys.: Conf. Ser., 1015 (2018), 032138
A. G. Shumikhin, A. S. Boyarshinova, “Algoritm vybora strukturnykh parametrov iskusstvennoi neironnoi seti i ob'ema obuchayuschei vyborki pri approksimatsii povedeniya dinamicheskogo ob'ekta”, Kompyuternye issledovaniya i modelirovanie, 7:2 (2015), 243–251