|
MATHEMATICAL MODELING AND NUMERICAL SIMULATION
Semiclassical approximation for the nonlocal multidimensionalfisher-kolmogorov-petrovskii-piskunov equation
E. A. Levchenkoa, A. Yu. Trifonova, A. V. Shapovalovb a Laboratory of Mathematical Physics of Mathematical Ph
ysics Department, Tomsk Polytechnical University,
30 Lenin ave., Tomsk, 634050, Russia
b Theoretical Physics Department, Tomsk State University, 36 Lenin ave., Tomsk, 634050, Russia
Abstract:
Semiclassical asymptotic solutions with accuracy $O(DN/2), N \ge 3$ are constructed for the multi-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation are found in explicit form.
Received: 27.01.2015
Citation:
E. A. Levchenko, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical approximation for the nonlocal multidimensionalfisher-kolmogorov-petrovskii-piskunov equation”, Computer Research and Modeling, 7:2 (2015), 205–219
Linking options:
https://www.mathnet.ru/eng/crm180 https://www.mathnet.ru/eng/crm/v7/i2/p205
|
Statistics & downloads: |
Abstract page: | 165 | Full-text PDF : | 62 | References: | 37 |
|