Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2023, Volume 15, Issue 2, Pages 281–300
DOI: https://doi.org/10.20537/2076-7633-2023-15-2-281-300
(Mi crm1060)
 

MATHEMATICAL MODELING AND NUMERICAL SIMULATION

Application of discrete multicriteria optimization methods for the digital predistortion model design

A. Yu. Maslovskiia, O. Yu. Sumenkovb, D. A. Vorkutovb, S. V. Chukanovc

a Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia
b Sirius University of Science and Technology, 1 Olimpiyskii pr., pgt. Sirius, federal’naya territoriya Sirius, Krasnodarskii krai, 354340, Russia
c Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova st., Moscow, 119333, Russia
References:
Abstract: In this paper, we investigate different alternative ideas for the design of digital predistortion models for radiofrequency power amplifiers. When compared to the greedy search algorithm, these algorithms allow a faster identification of the model parameters combination while still performing reasonably well. For the subsequent implementation, different metrics of model costs and score results in the process of optimization enable us to achieve sparse selections of the model, which balance the model accuracy and model resources (according to the complexity of implementation). The results achieved in the process of simulations show that combinations obtained with explored algorithms show the best performance after a lower number of simulations.
Keywords: digital predistortion, multicriteria optimization, model design, RF PA.
Funding agency Grant number
Russian Science Foundation 21-71-30005
This research was funded by the Russian Science Foundation (project 21-71-30005), https://rscf.ru/en/project/21-71-30005/.
Received: 19.02.2023
Accepted: 23.02.2023
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: English
Citation: A. Yu. Maslovskii, O. Yu. Sumenkov, D. A. Vorkutov, S. V. Chukanov, “Application of discrete multicriteria optimization methods for the digital predistortion model design”, Computer Research and Modeling, 15:2 (2023), 281–300
Citation in format AMSBIB
\Bibitem{MasSumVor23}
\by A.~Yu.~Maslovskii, O.~Yu.~Sumenkov, D.~A.~Vorkutov, S.~V.~Chukanov
\paper Application of discrete multicriteria optimization methods for the digital predistortion model design
\jour Computer Research and Modeling
\yr 2023
\vol 15
\issue 2
\pages 281--300
\mathnet{http://mi.mathnet.ru/crm1060}
\crossref{https://doi.org/10.20537/2076-7633-2023-15-2-281-300}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4573226}
Linking options:
  • https://www.mathnet.ru/eng/crm1060
  • https://www.mathnet.ru/eng/crm/v15/i2/p281
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025