Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2022, Volume 14, Issue 4, Pages 911–930
DOI: https://doi.org/10.20537/2076-7633-2022-14-4-911-930
(Mi crm1007)
 

This article is cited in 6 scientific papers (total in 6 papers)

SPECIAL ISSUE

Personalization of mathematical models in cardiology: obstacles and perspectives

Yu. V. Vassilevskiabc, S. S. Simakovabc, T. M. Gamilovabc, V. Yu. Salamatovaa, T. K. Dobroserdovab, G. V. Kopytovd, O. N. Bogdanova, A. A. Danilovab, M. A. Dergacheva, D. D. Dobrovolskiia, O. N. Kosukhina, E. V. Larinaa, E. Yu. Mychkaa, V. Yu. Kharina, K. V. Chesnokovaa, A. A. Shipilova

a Sechenov University, 2-4 B. Pirogovskaya st., Moscow, 119435, Russia
b INM RAS, 8 Gubkin st., Moscow, 119333, Russia
c Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
d Baltic Federal University, 14 Alexander Nevsky st., Kaliningrad, 236041, Russia
References:
Abstract: Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.
Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient's characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.
The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.
Keywords: computational biomechanics, personalized model.
Received: 21.12.2021
Revised: 01.03.2022
Accepted: 03.03.2022
Document Type: Article
UDC: 519.8
Language: Russian
Citation: Yu. V. Vassilevski, S. S. Simakov, T. M. Gamilov, V. Yu. Salamatova, T. K. Dobroserdova, G. V. Kopytov, O. N. Bogdanov, A. A. Danilov, M. A. Dergachev, D. D. Dobrovolskii, O. N. Kosukhin, E. V. Larina, E. Yu. Mychka, V. Yu. Kharin, K. V. Chesnokova, A. A. Shipilov, “Personalization of mathematical models in cardiology: obstacles and perspectives”, Computer Research and Modeling, 14:4 (2022), 911–930
Citation in format AMSBIB
\Bibitem{VasSimGam22}
\by Yu.~V.~Vassilevski, S.~S.~Simakov, T.~M.~Gamilov, V.~Yu.~Salamatova, T.~K.~Dobroserdova, G.~V.~Kopytov, O.~N.~Bogdanov, A.~A.~Danilov, M.~A.~Dergachev, D.~D.~Dobrovolskii, O.~N.~Kosukhin, E.~V.~Larina, E.~Yu.~Mychka, V.~Yu.~Kharin, K.~V.~Chesnokova, A.~A.~Shipilov
\paper Personalization of mathematical models in cardiology: obstacles and perspectives
\jour Computer Research and Modeling
\yr 2022
\vol 14
\issue 4
\pages 911--930
\mathnet{http://mi.mathnet.ru/crm1007}
\crossref{https://doi.org/10.20537/2076-7633-2022-14-4-911-930}
Linking options:
  • https://www.mathnet.ru/eng/crm1007
  • https://www.mathnet.ru/eng/crm/v14/i4/p911
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :199
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024