Loading [MathJax]/jax/output/SVG/config.js
Contemporary Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics, 2014, Volume 39, Issue 3, Pages 1–14
DOI: https://doi.org/10.1090/conm/619/12381
(Mi conm8)
 

This article is cited in 17 scientific papers (total in 17 papers)

Needle variations in infinite-horizon optimal control

S. M. Aseeva, V. M. Veliovbc

a International Institute for Applied Systems Analysis, Laxenburg
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c Vienna University of Technology
Citations (17)
Abstract: The paper develops the needle variations technique for a class of infinite-horizon optimal control problems in which an appropriate relation between the growth rate of the solution and the growth rate of the objective function is satisfied. The optimal objective value does not need to be finite. Based on the concept of weakly overtaking optimality, we establish a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable. A few illustrative examples are presented as well.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-91004-ANF-a
13-01-00685-a
Austrian Science Fund I 476-N13
The first author was supported in part by the Russian Foundation for Basic Research (RFBR) Grants No 10-01-91004-ANF-a and No 13-01-00685-a. The second author was supported by the Austrian Science Foundation (FWF) Grant No I 476-N13.
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/conm8
  • This publication is cited in the following 17 articles:
    1. I. M. Basovets, “Participation of referential mechanisms of subject nominations in the implementation of reliability in English and Belarusian media texts”, Vestnik of Samara University. History, pedagogics, philology, 29:4 (2023), 129  crossref
    2. S. M. Aseev, “Conditional cost function and necessary optimality conditions for infinite horizon optimal control problems”, Dokl. Math., 108:3 (2023), 425–430  mathnet  mathnet  crossref  crossref
    3. S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546  mathnet  crossref
    4. Dmitry Khlopin, “Necessary Conditions in Infinite-Horizon Control Problems that Need no Asymptotic Assumptions”, Set-Valued Var. Anal, 31:1 (2023)  crossref
    5. S. M. Aseev, V. M. Veliov, “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 74:6 (2019), 963–1011  mathnet  mathnet  crossref  crossref  isi  scopus
    6. Sabine Pickenhain, Angie Burtchen, “Problems in the Calculus of Variations on Unbounded Intervals—Fourier–Laguerre Analysis and Approximations”, Vietnam J. Math., 47:3 (2019), 617  crossref
    7. S. M. Aseev, K. O. Besov, S. Yu. Kaniovski, “Optimal Policies in the Dasgupta–Heal–Solow–Stiglitz Model under Nonconstant Returns to Scale”, Proc. Steklov Inst. Math., 304 (2019), 74–109  mathnet  mathnet  crossref  crossref  isi  scopus
    8. Sergey Aseev, Talha Manzoor, “Optimal exploitation of renewable resources: lessons in sustainability from an optimal growth model of natural resource consumption”, Lect. Notes Econ. Math. Syst., 687 (2018), 221–245  mathnet  crossref  isi  scopus
    9. Sabine Pickenhain, Angie Burtchen, “Regulator Problems on Unbounded Domains”, Vietnam J. Math., 46:4 (2018), 837  crossref
    10. Dmitry Khlopin, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, 1  crossref
    11. S. Pickenhain, A. Burtchen, K. Kolo, V. Lykina, “An indirect pseudospectral method for the solution of linear-quadratic optimal control problems with infinite horizon”, Optimization, 65:3 (2016), 609  crossref
    12. Nico Tauchnitz, “The Pontryagin Maximum Principle for Nonlinear Optimal Control Problems with Infinite Horizon”, J Optim Theory Appl, 167:1 (2015), 27  crossref
    13. D.V. Khlopin, “Necessity of limiting co-state arcs in Bolza-type infinite horizon problem”, Optimization, 64:11 (2015), 2417  crossref
    14. B. Skritek, V. M. Veliov, “On the Infinite-Horizon Optimal Control of Age-Structured Systems”, J Optim Theory Appl, 167:1 (2015), 243  crossref
    15. S. M. Aseev, “Adjoint variables and intertemporal prices in infinite-horizon optimal control problems”, Proc. Steklov Inst. Math., 290:1 (2015), 223–237  mathnet  mathnet  crossref  crossref  isi  scopus
    16. Agnieszka Wiszniewska-Matyszkiel, Marek Bodnar, Fryderyk Mirota, “Dynamic Oligopoly with Sticky Prices: Off-Steady State Analysis”, SSRN Journal, 2014  crossref
    17. S. M. Aseev, “On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems”, Proc. Steklov Inst. Math. (Suppl.), 287:1 (2014), 11–21  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:183
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025