Computer Optics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Optics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Optics, 2021, Volume 45, Issue 1, Pages 130–141
DOI: https://doi.org/10.18287/2412-6179-CO-834
(Mi co889)
 

This article is cited in 24 scientific papers (total in 24 papers)

IMAGE PROCESSING, PATTERN RECOGNITION

Deep learning-based video stream reconstruction in mass-production diffractive optical systems

V. V. Evdokimovaab, M. V. Petrovab, M. A. Klyuevaab, E. Yu. Zybinc, V.V. Kosianchukc, I. B. Mishchenkoc, V. M. Novikovc, N. I. Sel'vesyukc, E. I. Ershovd, N. A. Ivlievab, R. V. Skidanovba, N. L. Kazanskiyab, A. V. Nikonorovba

a Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
b IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, 443001, Samara, Russia, Molodogvardeyskaya 151
c Federal State Unitary Enterprise State Research Institute of Aviation Systems, 125319, Russia, Moscow, Viktorenko, 7
d Institute for Information Transmission Problems, RAS, 127051, Moscow, Russia, Bolshoy Karetny per. 19, build 1
References:
Abstract: Many recent studies have focused on developing image reconstruction algorithms in optical systems based on flat optics. These studies demonstrate the feasibility of applying a combination of flat optics and the reconstruction algorithms in real vision systems. However, additional causes of quality loss have been encountered in the development of such systems. This study investigates the influence on the reconstructed image quality of such factors as limitations of mass production technology for diffractive optics, lossy video stream compression artifacts, and specificities of a neural network approach to image reconstruction. The paper offers an end-to-end deep learning-based image reconstruction framework to compensate for the additional factors of quality losing. It provides the image reconstruction quality sufficient for applied vision systems.
Keywords: diffractive optics, diffractive lenses, deep learning-based reconstruction, image processing.
Funding agency Grant number
Russian Science Foundation 20-69-47110
Russian Foundation for Basic Research 18-07-01390-А
Ministry of Science and Higher Education of the Russian Federation 007-ГЗ/Ч3363/26
The theoretical part and neural network models were developed with the support from the Russian Science Foundation under RSF grant 20-69-47110. The experimental part was executed with the support from the Russian Foundation for Basic Research under RFBR grant 18-07-01390-А and under the government project of the IPSI RAS – a branch of the Federal Scientific-Research Center "Crystallography and Photonics" of the RAS (agreement 007-ГЗ/Ч3363/2б).
Received: 12.11.2020
Accepted: 08.12.2020
Document Type: Article
Language: Russian
Citation: V. V. Evdokimova, M. V. Petrov, M. A. Klyueva, E. Yu. Zybin, V.V. Kosianchuk, I. B. Mishchenko, V. M. Novikov, N. I. Sel'vesyuk, E. I. Ershov, N. A. Ivliev, R. V. Skidanov, N. L. Kazanskiy, A. V. Nikonorov, “Deep learning-based video stream reconstruction in mass-production diffractive optical systems”, Computer Optics, 45:1 (2021), 130–141
Citation in format AMSBIB
\Bibitem{EvdPetKly21}
\by V.~V.~Evdokimova, M.~V.~Petrov, M.~A.~Klyueva, E.~Yu.~Zybin, V.V. Kosianchuk, I.~B.~Mishchenko, V.~M.~Novikov, N.~I.~Sel'vesyuk, E.~I.~Ershov, N.~A.~Ivliev, R.~V.~Skidanov, N.~L.~Kazanskiy, A.~V.~Nikonorov
\paper Deep learning-based video stream reconstruction in mass-production diffractive optical systems
\jour Computer Optics
\yr 2021
\vol 45
\issue 1
\pages 130--141
\mathnet{http://mi.mathnet.ru/co889}
\crossref{https://doi.org/10.18287/2412-6179-CO-834}
Linking options:
  • https://www.mathnet.ru/eng/co889
  • https://www.mathnet.ru/eng/co/v45/i1/p130
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Optics
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :124
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024