|
This article is cited in 5 scientific papers (total in 5 papers)
IMAGE PROCESSING, PATTERN RECOGNITION
Adaptive interpolation based on optimization of the decision rule in a multidimensional feature space
M. V. Gashnikovab a Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia
b IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia
Abstract:
An adaptive multidimensional signal interpolator is proposed, which selects an interpolating function at each signal point by means of the decision rule optimized in a multidimensional feature space using a decision tree. The search for the dividing boundary when splitting the decision tree vertices is carried out by a recurrence procedure that allows, in addition to the search for the boundary, selecting the best pair of interpolating functions from a predetermined set of functions of an arbitrary form. Results of computational experiments in nature multidimensional signals are presented, confirming the effectiveness of the adaptive interpolator.
Keywords:
multidimensional signal, adaptive interpolation, multidimensional feature, optimization, interpolation error.
Received: 05.11.2019 Accepted: 29.11.2019
Citation:
M. V. Gashnikov, “Adaptive interpolation based on optimization of the decision rule in a multidimensional feature space”, Computer Optics, 44:1 (2020), 101–108
Linking options:
https://www.mathnet.ru/eng/co767 https://www.mathnet.ru/eng/co/v44/i1/p101
|
Statistics & downloads: |
Abstract page: | 133 | Full-text PDF : | 40 | References: | 27 |
|