Computer Optics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Optics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Optics, 2023, Volume 47, Issue 3, Pages 451–463
DOI: https://doi.org/10.18287/2412-6179-CO-1235
(Mi co1144)
 

IMAGE PROCESSING, PATTERN RECOGNITION

Low-parameter method for delineation of agricultural fields in satellite images based on multi-temporal MSAVI2 data

M. A. Pavlovaa, V. A. Timofeeva, D. A. Bocharova, D. S. Sidorchuka, A. L. Nurmukhametova, A. V. Nikonorovbc, M. S. Yarykinaa, I. A. Kuninaa, A. A. Smaginaa, M. A. Zagareva

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Image Processing Systems Institute of the RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia, Samara
c Samara National Research University
References:
Abstract: This paper considers an issue of delineating agricultural fields in satellite images. In this task we follow a multi-temporal data approach. We show that on such data, good quality can be achieved using a simple low-parameter method. The method consists of a combination of a field detector and an edge detector. The field detection is based on an Otsu thresholding technique and for the edge detection we use a Canny detector. Facing a lack of available datasets and aiming to estimate the proposed algorithm, we prepared and published our dataset consisting of 18,859 expertly annotated fields using Sentinel-2 data. We implement one of the state-of-the-art deep-learning approaches and compare it with the proposed method on our dataset. The experiment shows the proposed simple multi-temporal algorithm to outperform the state-of-the-art instant data approach. This result confirms the importance of using multi-temporal data and for the first time demonstrates that the delineation problem can be solved at a lower cost without loss of quality. Our approach requires a significantly less amount of training data when compared with the NN-based one. The dataset of agricultural fields used in the work and the proposed algorithm implementation in Python are published in open access.
Keywords: low-parameter algorithm, computer vision, fields delineation, remote sensing, multi-temporal data, open dataset
Funding agency Grant number
Russian Science Foundation 20-61-47089
This work was supported by the Russian Science Foundation (Project No. 20-61-47089).
Received: 07.10.2022
Accepted: 12.12.2022
Document Type: Article
Language: Russian
Citation: M. A. Pavlova, V. A. Timofeev, D. A. Bocharov, D. S. Sidorchuk, A. L. Nurmukhametov, A. V. Nikonorov, M. S. Yarykina, I. A. Kunina, A. A. Smagina, M. A. Zagarev, “Low-parameter method for delineation of agricultural fields in satellite images based on multi-temporal MSAVI2 data”, Computer Optics, 47:3 (2023), 451–463
Citation in format AMSBIB
\Bibitem{PavTimBoc23}
\by M.~A.~Pavlova, V.~A.~Timofeev, D.~A.~Bocharov, D.~S.~Sidorchuk, A.~L.~Nurmukhametov, A.~V.~Nikonorov, M.~S.~Yarykina, I.~A.~Kunina, A.~A.~Smagina, M.~A.~Zagarev
\paper Low-parameter method for delineation of agricultural fields in satellite images based on multi-temporal MSAVI2 data
\jour Computer Optics
\yr 2023
\vol 47
\issue 3
\pages 451--463
\mathnet{http://mi.mathnet.ru/co1144}
\crossref{https://doi.org/10.18287/2412-6179-CO-1235}
Linking options:
  • https://www.mathnet.ru/eng/co1144
  • https://www.mathnet.ru/eng/co/v47/i3/p451
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Optics
    Statistics & downloads:
    Abstract page:29
    Full-text PDF :9
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024