Computer Optics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Optics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Optics, 2023, Volume 47, Issue 1, Pages 152–159
DOI: https://doi.org/10.18287/2412-6179-CO-1201
(Mi co1112)
 

This article is cited in 1 scientific paper (total in 1 paper)

IMAGE PROCESSING, PATTERN RECOGNITION

Joint analysis of radiological reports and CT images for automatic validation of pathological brain conditions

J. D. Agafonovaa, A. V. Gaidelab, P. M. Zelterc, A. V. Kapishnikovc, A. V. Kuznetsovade, E. N. Surovtsevc, A. V. Nikonorovab

a Samara National Research University
b Image Processing Systems Institute of the RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia, Samara
c Samara State Medical University
d Artificial Intelligence Research Institute, Moscow
e Sber AI, 121170, Moscow, Russia, Kutuzovsky prospekt, 32 building 2
References:
Abstract: We consider a problem of validation of radiological medical reports and computed tomography images for an automated analysis of brain structures. Two methods for solving the problem are proposed: a method based on the ruCLIP multimodal model, and a method based on the joint use of two separate classifiers – for a text report and for a brain CT image. We discuss methods evaluation and the obtained results. The proposed approaches make it possible to correctly classify 99.6
Keywords: deep learning, computed tomography, computer-aided diagnosis, pattern recognition, natural language processing
Funding agency Grant number
Russian Foundation for Basic Research 19-29-01235МК
This work was supported by the Russian Science Foundation (Project No. 19-29-01235).
Received: 01.08.2022
Accepted: 10.10.2022
Document Type: Article
Language: Russian
Citation: J. D. Agafonova, A. V. Gaidel, P. M. Zelter, A. V. Kapishnikov, A. V. Kuznetsov, E. N. Surovtsev, A. V. Nikonorov, “Joint analysis of radiological reports and CT images for automatic validation of pathological brain conditions”, Computer Optics, 47:1 (2023), 152–159
Citation in format AMSBIB
\Bibitem{AgaGaiZel23}
\by J.~D.~Agafonova, A.~V.~Gaidel, P.~M.~Zelter, A.~V.~Kapishnikov, A.~V.~Kuznetsov, E.~N.~Surovtsev, A.~V.~Nikonorov
\paper Joint analysis of radiological reports and CT images for automatic validation of pathological brain conditions
\jour Computer Optics
\yr 2023
\vol 47
\issue 1
\pages 152--159
\mathnet{http://mi.mathnet.ru/co1112}
\crossref{https://doi.org/10.18287/2412-6179-CO-1201}
Linking options:
  • https://www.mathnet.ru/eng/co1112
  • https://www.mathnet.ru/eng/co/v47/i1/p152
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Optics
    Statistics & downloads:
    Abstract page:25
    Full-text PDF :16
    References:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024