Computer Optics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Optics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Optics, 2022, Volume 46, Issue 3, Pages 455–464
DOI: https://doi.org/10.18287/2412-6179-CO-1049
(Mi co1034)
 

This article is cited in 3 scientific papers (total in 3 papers)

INTERNATIONAL CONFERENCE ON MACHINE VISION

Handwritten text generation and strikethrough characters augmentation

A. V. Shonenkova, D. K. Karachevb, M. Yu. Novopoltseva, M. S. Potaninac, D. V. Dimitrovad, A. V. Chertokae

a Sber AI, Moscow, Russia
b OCRV, Moscow, Russia
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
d Lomonosov Moscow State University
e AIRI, Moscow, Russia, Nizhny Susalny lane, 5, p. 19
Abstract: We introduce two data augmentation techniques, which, used with a Resnet – BiLSTM – CTC network, significantly reduce Word Error Rate and Character Error Rate beyond best-reported results on handwriting text recognition tasks. We apply a novel augmentation that simulates strike-through text (HandWritten Blots) and a handwritten text generation method based on printed text (StackMix), which proved to be very effective in handwriting text recognition tasks. StackMix uses weakly-supervised framework to get character boundaries. Because these data augmentation techniques are independent of the network used, they could also be applied to enhance the performance of other networks and approaches to handwriting text recognition. Extensive experiments on ten handwritten text datasets show that HandWritten Blots augmentation and StackMix significantly improve the quality of handwriting text recognition models.
Keywords: data augmentation, handwritten text recognition, strikethrough text, computer vision, StackMix, handwritten blots
Document Type: Article
Language: English
Citation: A. V. Shonenkov, D. K. Karachev, M. Yu. Novopoltsev, M. S. Potanin, D. V. Dimitrov, A. V. Chertok, “Handwritten text generation and strikethrough characters augmentation”, Computer Optics, 46:3 (2022), 455–464
Citation in format AMSBIB
\Bibitem{ShoKarNov22}
\by A.~V.~Shonenkov, D.~K.~Karachev, M.~Yu.~Novopoltsev, M.~S.~Potanin, D.~V.~Dimitrov, A.~V.~Chertok
\paper Handwritten text generation and strikethrough characters augmentation
\jour Computer Optics
\yr 2022
\vol 46
\issue 3
\pages 455--464
\mathnet{http://mi.mathnet.ru/co1034}
\crossref{https://doi.org/10.18287/2412-6179-CO-1049}
Linking options:
  • https://www.mathnet.ru/eng/co1034
  • https://www.mathnet.ru/eng/co/v46/i3/p455
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Optics
    Statistics & downloads:
    Abstract page:25
    Full-text PDF :11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024