Computer Optics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Optics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Optics, 2022, Volume 46, Issue 2, Pages 252–270
DOI: https://doi.org/10.18287/2412-6179-CO-1006
(Mi co1015)
 

This article is cited in 18 scientific papers (total in 18 papers)

IMAGE PROCESSING, PATTERN RECOGNITION

MIDV-2020: a comprehensive benchmark dataset for identity document analysis

K. B. Bulatovab, E. V. Emelianovabc, D. V. Tropinabd, N. S. Skoryukinaab, Y. S. Chernyshovaab, A. V. Sheshkusab, S. A. Usilinab, Z. Minge, J.-Ch. Buriee, M. M. Luqmane, V. V. Arlazarovab

a Federal Research Center «Computer Science and Control» or Russian Academy of Sciences, Moscow, Russia
b Smart Engines Service LLC, Moscow, Russia
c National University of Science and Technology «MISIS», Moscow, Russia
d Moscow Institute of Physics and Technology (State University), Moscow, Russia
e L3i Laboratory, La Rochelle University, La Rochelle, France
Abstract: Identity documents recognition is an important sub-field of document analysis, which deals with tasks of robust document detection, type identification, text fields recognition, as well as identity fraud prevention and document authenticity validation given photos, scans, or video frames of an identity document capture. Significant amount of research has been published on this topic in recent years, however a chief difficulty for such research is scarcity of datasets, due to the subject matter being protected by security requirements. A few datasets of identity documents which are available lack diversity of document types, capturing conditions, or variability of document field values. In this paper, we present a dataset MIDV-2020 which consists of 1000 video clips, 2000 scanned images, and 1000 photos of 1000 unique mock identity documents, each with unique text field values and unique artificially generated faces, with rich annotation. The dataset contains 72409 annotated images in total, making it the largest publicly available identity document dataset to the date of publication. We describe the structure of the dataset, its content and annotations, and present baseline experimental results to serve as a basis for future research. For the task of document location and identification content-independent, feature-based, and semantic segmentation-based methods were evaluated. For the task of document text field recognition, the Tesseract system was evaluated on field and character levels with grouping by field alphabets and document types. For the task of face detection, the performance of Multi Task Cascaded Convolutional Neural Networks-based method was evaluated separately for different types of image input modes. The baseline evaluations show that the existing methods of identity document analysis have a lot of room for improvement given modern challenges. We believe that the proposed dataset will prove invaluable for advancement of the field of document analysis and recognition.
Keywords: document analysis, document recognition, identity documents, open data, video recognition, document location, text recognition, face detection
Funding agency Grant number
Russian Foundation for Basic Research 19-29-09066
19-29-09092
This work is partially supported by Russian Foundation for Basic Research (projects 19-29-09066 and 19-29-09092). All source images for MIDV-2020 dataset were obtained from Wikimedia Commons. Author attributions for each source images are listed in the original MIDV-500 description table (ftp://smartengines.com/midv-500/documents.pdf). Face images by Generated Photos (https://generated.photos).
Received: 01.07.2021
Accepted: 18.11.2021
Document Type: Article
Language: Russian
Citation: K. B. Bulatov, E. V. Emelianova, D. V. Tropin, N. S. Skoryukina, Y. S. Chernyshova, A. V. Sheshkus, S. A. Usilin, Z. Ming, J.-Ch. Burie, M. M. Luqman, V. V. Arlazarov, “MIDV-2020: a comprehensive benchmark dataset for identity document analysis”, Computer Optics, 46:2 (2022), 252–270
Citation in format AMSBIB
\Bibitem{BulEmeTro22}
\by K.~B.~Bulatov, E.~V.~Emelianova, D.~V.~Tropin, N.~S.~Skoryukina, Y.~S.~Chernyshova, A.~V.~Sheshkus, S.~A.~Usilin, Z.~Ming, J.-Ch.~Burie, M.~M.~Luqman, V.~V.~Arlazarov
\paper MIDV-2020: a comprehensive benchmark dataset for identity document analysis
\jour Computer Optics
\yr 2022
\vol 46
\issue 2
\pages 252--270
\mathnet{http://mi.mathnet.ru/co1015}
\crossref{https://doi.org/10.18287/2412-6179-CO-1006}
Linking options:
  • https://www.mathnet.ru/eng/co1015
  • https://www.mathnet.ru/eng/co/v46/i2/p252
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Optics
    Statistics & downloads:
    Abstract page:22
    Full-text PDF :10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024