Computational nanotechnology
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Comp. nanotechnol.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computational nanotechnology, 2024, Volume 11, Issue 3, Pages 64–80
DOI: https://doi.org/10.33693/2313-223X-2024-11-3-64-80
(Mi cn495)
 

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Algorithm for identifying abnormal actions

N. M. Hadi, D. G. Andryushenkov, A. N. Chesalin

MIREA – Russian Technological University
Abstract: The study is devoted to the problem of recognition of human activity recognition and the definition of normal and abnormal behavior (activity) depending on the action scene. Automated detection of abnormal activity using computer vision technologies and rapid response makes it possible to improve the work of rapid response services, thereby saving human lives or stopping offenses. The paper presents a comprehensive review of methods for recognizing human activity and detecting abnormal human activity based on deep learning. Various classifications of abnormal activity are investigated, and then deep learning methods and neural network architectures used to detect abnormal activity are discussed and analyzed. Based on the comparative analysis of various approaches, an algorithm for recognizing human activity has been proposed and a neural network has been developed that determines violent and nonviolent actions with an accuracy of 92,22% in 150 epochs.
Keywords: deep learning, human behavior, video surveillance.
Document Type: Article
UDC: 004.8
Language: Russian
Citation: N. M. Hadi, D. G. Andryushenkov, A. N. Chesalin, “Algorithm for identifying abnormal actions”, Comp. nanotechnol., 11:3 (2024), 64–80
Citation in format AMSBIB
\Bibitem{HadAndChe24}
\by N.~M.~Hadi, D.~G.~Andryushenkov, A.~N.~Chesalin
\paper Algorithm for identifying abnormal actions
\jour Comp. nanotechnol.
\yr 2024
\vol 11
\issue 3
\pages 64--80
\mathnet{http://mi.mathnet.ru/cn495}
\crossref{https://doi.org/10.33693/2313-223X-2024-11-3-64-80}
Linking options:
  • https://www.mathnet.ru/eng/cn495
  • https://www.mathnet.ru/eng/cn/v11/i3/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computational nanotechnology
    Statistics & downloads:
    Abstract page:10
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024