Computational nanotechnology
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Comp. nanotechnol.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computational nanotechnology, 2024, Volume 11, Issue 1, Pages 135–150
DOI: https://doi.org/10.33693/2313-223X-2024-11-1-135-150
(Mi cn468)
 

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Neural networks in the task of genre classification of musical compositions

N. V. Grineva, N. V. Grineva

Financial University under the Government of the Russian Federation
Abstract: This study investigates the application of neural networks in the task of classifying audio signals into ten different genres. The peculiarities of processing audio signals in the digital environment are examined, along with the relationship between Fourier transformation and spectrograms, and the characteristics of audio signals. Neural network training was conducted using the GTZAN dataset, which contains 1000 compositions. Four comparable datasets were formed based on this dataset, and the performance of three neural network architectures – convolutional, recurrent, and multilayer perceptron – was evaluated on each of them. The practical significance of this work lies in the possibility of forming musical recommendations and organizing music. The goal of the study is to develop a classifier that could accurately determine the probability of a composition belonging to one of the ten genres.
Keywords: audio signal, mel spectrogram, spectrum, Fourier transform, GTZAN, multilayer perceptron (MLP), convolutional neural network (CNN), genre classification task.
Document Type: Article
UDC: 519.6
Language: Russian
Citation: N. V. Grineva, N. V. Grineva, “Neural networks in the task of genre classification of musical compositions”, Comp. nanotechnol., 11:1 (2024), 135–150
Citation in format AMSBIB
\Bibitem{GriGri24}
\by N.~V.~Grineva, N.~V.~Grineva
\paper Neural networks in the task of genre classification of musical compositions
\jour Comp. nanotechnol.
\yr 2024
\vol 11
\issue 1
\pages 135--150
\mathnet{http://mi.mathnet.ru/cn468}
\crossref{https://doi.org/10.33693/2313-223X-2024-11-1-135-150}
Linking options:
  • https://www.mathnet.ru/eng/cn468
  • https://www.mathnet.ru/eng/cn/v11/i1/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computational nanotechnology
    Statistics & downloads:
    Abstract page:18
    Full-text PDF :9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024