Computational nanotechnology
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Comp. nanotechnol.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computational nanotechnology, 2024, Volume 11, Issue 1, Pages 104–111
DOI: https://doi.org/10.33693/2313-223X-2024-11-1-104-111
(Mi cn464)
 

MATHEMATICAL AND SOFTWARE OF COMPUTЕRS, COMPLEXES AND COMPUTER NETWORKS

Advanced electron microscopy image processing for analyzing amorphous alloys: Electron Microscopy Image Cluster Analyzer (EMICA). Tool and results

D. S. Dilla, E. V. Pustovalov, A. N. Fedorets

Institute of Mathematics and Computer Technologies, Far Eastern Federal University
Abstract: This article unveils EMICA, a Python-based software tool revolutionizing electron microscopy image processing for amorphous alloys. EMICA addresses the unique challenges posed by these materials, which lack long-range order, by providing specialized capabilities for cluster analysis and spatial pattern recognition. This research explored software tool development and application through illustrative examples, answering the key question of how they enhance amorphous alloy analysis. By integrating advanced image processing techniques and algorithms, EMICA uncovers hidden patterns, offering quantitative insights into cluster distributions. The key message emphasizes the application's transformative impact on material science research, providing a specialized solution for electron microscopy image analysis in the amorphous alloy domain. Our key findings, presented through real-world examples and case studies, attest to the efficacy of the software in revealing nuanced details of amorphous alloy structures. From identifying subtle variations in atomic configurations to quantifying cluster distributions, EMICA represents a significant leap forward in the field of advanced electron microscopy image processing, contributing significantly to the advancement of this domain.
Keywords: amorphous alloys, electron microscopy, cluster analysis, clustering, software tools, algorithms.
Funding agency Grant number
ДВФУ ЭФ 22-02-03-005
This work was financially supported by FEFU EF No. 22-02-03-005.
Document Type: Article
UDC: 519.6
Language: English
Citation: D. S. Dilla, E. V. Pustovalov, A. N. Fedorets, “Advanced electron microscopy image processing for analyzing amorphous alloys: Electron Microscopy Image Cluster Analyzer (EMICA). Tool and results”, Comp. nanotechnol., 11:1 (2024), 104–111
Citation in format AMSBIB
\Bibitem{SilPusFed24}
\by D. S. Dilla, E.~V.~Pustovalov, A.~N.~Fedorets
\paper Advanced electron microscopy image processing for analyzing amorphous alloys: Electron Microscopy Image Cluster Analyzer (EMICA). Tool and results
\jour Comp. nanotechnol.
\yr 2024
\vol 11
\issue 1
\pages 104--111
\mathnet{http://mi.mathnet.ru/cn464}
\crossref{https://doi.org/10.33693/2313-223X-2024-11-1-104-111}
Linking options:
  • https://www.mathnet.ru/eng/cn464
  • https://www.mathnet.ru/eng/cn/v11/i1/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computational nanotechnology
    Statistics & downloads:
    Abstract page:14
    Full-text PDF :14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024