Computational nanotechnology
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Comp. nanotechnol.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computational nanotechnology, 2024, Volume 11, Issue 1, Pages 68–77
DOI: https://doi.org/10.33693/2313-223X-2024-11-1-68-77
(Mi cn460)
 

SYSTEM ANALYSIS, INFORMATION MANAGEMENT AND PROCESSING, STATISTICS

The effectiveness of the A2C algorithm in relation to classical models of the theory of economic growth

A. M. Moiseenkoa, N. V. Grinevab

a Russian Academy of National Economy and Public Administration under the President of the Russian Federation
b Financial University under the Government of the Russian Federation
Abstract: The relevance of the study is to identify the accuracy of the estimate obtained by the A2C algorithm, as well as the need for verification of reinforcement learning when working with optimization of economic processes. The purpose of the study was to analyze the effectiveness of the A2C algorithm, along with the specifics of its implementation, in solving optimization economic problems. The tasks considered were maximizing consumption in the Solow, Romer and Schumpeterian models of endogenous economic growth, and maximizing per capita income in the latter two, according to the consumption rate (in the latter two – saving rate) and the share of scientists in the economy, respectively. The results showed that for deterministic models (Solow model, Romer model), the variance of the parameter estimate is minimal and the average differs from the value obtained analytically by no more than a thousandth part with a sufficiently high number of time periods in the model. Nevertheless, in stochastic models (the Schumpeterian model), firstly, a high number of time periods in the model is required to match the estimate to the value obtained analytically, and secondly, the estimate obtained in this way, although biased by no more than a thousandth of a fraction, has a high variance.
Keywords: reinforcement learning, macroeconomic modeling, Solow model, Romer model, Schumpeterian model of endogenous economic growth, optimization of macroeconomic processes, theory of economic growth.
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. M. Moiseenko, N. V. Grineva, “The effectiveness of the A2C algorithm in relation to classical models of the theory of economic growth”, Comp. nanotechnol., 11:1 (2024), 68–77
Citation in format AMSBIB
\Bibitem{MoiGri24}
\by A.~M.~Moiseenko, N.~V.~Grineva
\paper The effectiveness of the A2C algorithm in relation to classical models of the theory of economic growth
\jour Comp. nanotechnol.
\yr 2024
\vol 11
\issue 1
\pages 68--77
\mathnet{http://mi.mathnet.ru/cn460}
\crossref{https://doi.org/10.33693/2313-223X-2024-11-1-68-77}
Linking options:
  • https://www.mathnet.ru/eng/cn460
  • https://www.mathnet.ru/eng/cn/v11/i1/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computational nanotechnology
    Statistics & downloads:
    Abstract page:12
    Full-text PDF :8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024