Computational nanotechnology
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Comp. nanotechnol.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computational nanotechnology, 2023, Volume 10, Issue 4, Pages 46–55
DOI: https://doi.org/10.33693/2313-223X-2023-10-4-46-55
(Mi cn446)
 

SYSTEM ANALYSIS, INFORMATION MANAGEMENT AND PROCESSING, STATISTICS

An overview of existing methods for automatic generation of test tasks in natural language

M. A. Maslova

Volzhsky Polytechnic Institute (branch) of Volgograd State Technical University
Abstract: Recently, in the field of education, much attention has been paid to the use of multiple choice questions as a tool for assessing knowledge. The development of test tasks requires a lot of time and is highly labor intensive. It is difficult to perform such a task manually, so many researchers offer various ways and approaches to automate the creation of test tasks in natural language. In this paper, we present an overview of scientific achievements in the field of automatic question generation, which examines the classification of question generation systems by dividing them into five groups: machine learning-based methods, neural network-based, tree-based, rule-based or template-based and hybrid methods.
Keywords: automatic generation of test tasks, automatic generation of test questions, natural language processing, natural language generation.
Document Type: Article
UDC: 004
Language: Russian
Citation: M. A. Maslova, “An overview of existing methods for automatic generation of test tasks in natural language”, Comp. nanotechnol., 10:4 (2023), 46–55
Citation in format AMSBIB
\Bibitem{Mas23}
\by M.~A.~Maslova
\paper An overview of existing methods for automatic generation of test tasks in natural language
\jour Comp. nanotechnol.
\yr 2023
\vol 10
\issue 4
\pages 46--55
\mathnet{http://mi.mathnet.ru/cn446}
\crossref{https://doi.org/10.33693/2313-223X-2023-10-4-46-55}
Linking options:
  • https://www.mathnet.ru/eng/cn446
  • https://www.mathnet.ru/eng/cn/v10/i4/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computational nanotechnology
    Statistics & downloads:
    Abstract page:15
    Full-text PDF :13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024