Computational nanotechnology
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Comp. nanotechnol.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computational nanotechnology, 2023, Volume 10, Issue 4, Pages 16–22
DOI: https://doi.org/10.33693/2313-223X-2023-10-4-16-22
(Mi cn443)
 

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Detection of depression among social network users using machine learning methods

A. A. Zotkina, A. I. Martyshkin

Penza State Technological University
Abstract: Statistical data provided by the FSBI “NMITSPN named after V.P. Serbsky” of the Ministry of Health of Russia indicate that depression, as a psychoemotional state, is the main cause of concern around the world, which in most cases leads to suicide, if not detected, and to a threat to others. Studies show that depression tends to have an impact on writing style and appropriate language use. The main purpose of the proposed study is to study user messages on the VKontakte social network and identify attributes that may indicate depressive symptoms of users. The article uses machine learning approaches (logistic regression, random forest, support vector machine, XGBoost) and natural language processing methods (removal of stop words, character deletion, tokenization, lemmatization) to prepare data and evaluate their effectiveness. The work demonstrated that the ability to search for depressed users with an accuracy of 77% using the XGBoost classifier. This method is combined with other linguistic functions (N-gram + TF-IDF) and LDA to achieve higher accuracy. In conclusion, the main conclusions of the study are formulated.
Keywords: social networks, VKontakte, support vector machine, logistic regression, random forest, XGBoost, depression.
Document Type: Article
UDC: 004.85
Language: Russian
Citation: A. A. Zotkina, A. I. Martyshkin, “Detection of depression among social network users using machine learning methods”, Comp. nanotechnol., 10:4 (2023), 16–22
Citation in format AMSBIB
\Bibitem{ZotMar23}
\by A.~A.~Zotkina, A.~I.~Martyshkin
\paper Detection of depression among social network users using machine learning methods
\jour Comp. nanotechnol.
\yr 2023
\vol 10
\issue 4
\pages 16--22
\mathnet{http://mi.mathnet.ru/cn443}
\crossref{https://doi.org/10.33693/2313-223X-2023-10-4-16-22}
Linking options:
  • https://www.mathnet.ru/eng/cn443
  • https://www.mathnet.ru/eng/cn/v10/i4/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computational nanotechnology
    Statistics & downloads:
    Abstract page:12
    Full-text PDF :5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024