Loading [MathJax]/jax/output/SVG/config.js
Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2007, Volume 23, Pages 96–146 (Mi cmfd95)  

This article is cited in 10 scientific papers (total in 10 papers)

Variational Bounds and Integral Relations Method in Problems of Stability

D. V. Georgievskii

M. V. Lomonosov Moscow State University
References:
English version:
Journal of Mathematical Sciences, 2008, Volume 154, Issue 4, Pages 549–603
DOI: https://doi.org/10.1007/s10958-008-9195-z
Bibliographic databases:
UDC: 517.972
Language: Russian
Citation: D. V. Georgievskii, “Variational Bounds and Integral Relations Method in Problems of Stability”, Geometry and mechanics, CMFD, 23, PFUR, M., 2007, 96–146; Journal of Mathematical Sciences, 154:4 (2008), 549–603
Citation in format AMSBIB
\Bibitem{Geo07}
\by D.~V.~Georgievskii
\paper Variational Bounds and Integral Relations Method in Problems of Stability
\inbook Geometry and mechanics
\serial CMFD
\yr 2007
\vol 23
\pages 96--146
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2342527}
\zmath{https://zbmath.org/?q=an:1220.76034}
\elib{https://elibrary.ru/item.asp?id=13597226}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 154
\issue 4
\pages 549--603
\crossref{https://doi.org/10.1007/s10958-008-9195-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54849409163}
Linking options:
  • https://www.mathnet.ru/eng/cmfd95
  • https://www.mathnet.ru/eng/cmfd/v23/p96
  • This publication is cited in the following 10 articles:
    1. Dimitri Georgievskii, Vakhtang Putkaradze, “Energy-based stability estimates for incompressible media with tensor-nonlinear constitutive relations”, Continuum Mech. Thermodyn., 35:4 (2023), 1403  crossref
    2. D. V. Georgievskii, “Stability of an Unsteady Shear of Bingham Medium in the Plane Layer”, Fluid Dyn, 53:S2 (2018), 55  crossref
    3. D. V. Georgievskii, “Estimation of the Decay of Perturbations Imposed on an Accelerating Viscoplastic Couette Flow”, Dokl. Phys., 63:2 (2018), 86  crossref
    4. D. V. Georgievskii, G. S. Tlyustangelov, “Estimates of the evolucion of small perturbations by radial spreading (drain) of a viscous ring”, J. Appl. Mech. Tech. Phys., 58:4 (2017), 610–618  mathnet  mathnet  crossref  crossref
    5. D. Georgievskii, V.  Putkaradze, G. Tlyustangelov, “TREKhMERNYE VOZMUSchENIYa RADIALNO-VRASchATELNOGO RASTEKANIYa-STOKA VYaZKOGO TsILINDRIChESKOGO SLOYa”, Doklady Akademii nauk, 2017, no. 6, 655  crossref
    6. D. V. Georgievskii, V. G. Putkaradze, G. S. Tlyustangelov, “Three-dimensional perturbations of the radial-rotational spread–sink of a viscous cylindrical layer”, Dokl. Phys., 62:4 (2017), 218  crossref
    7. D. V. Georgievskii, “Evolyutsiya trekhmernoi kartiny vozmuschenii, nalozhennykh na vraschatelno-osevoe techenie v tsilindricheskom zazore”, Nelineinaya dinam., 10:3 (2014), 345–354  mathnet
    8. D. V. Georgievskii, W. H. Müller, B. E. Abali, “Generalizations of the Orr-Sommerfeld problem for the case in which the unperturbed shear motion is nonsteady”, Russ. J. Math. Phys., 21:2 (2014), 189  crossref
    9. Georgievskii D.V., Semenov A.S., “Eigenvalue Problems Modelling the Stability of a Plane-Parallel Shear in a Two-Layer Viscous Composite”, Russ. J. Math. Phys., 19:4 (2012), 461–468  crossref  mathscinet  zmath  isi  elib
    10. D. V. Georgievskii, “Growth estimates of perturbations in eigenvalue problems for the Rayleigh equation”, Moscow Univ. Mech. Bull., 65:6 (2010), 136  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:677
    Full-text PDF :326
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025