Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2007, Volume 21, Pages 77–86 (Mi cmfd78)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic behavior of solutions of delay equations in Hilbert spaces

D. A. Medvedev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (200 kB) Citations (1)
References:
Abstract: We establish unimprovable estimates of solutions of inhomogeneous delay differential-difference equations, the coefficients of which are unbounded operators and operator-functions acting in a Hilbert space. We also present results about expansions of those solutions into a sum of a (finite) linear combination of exponential solutions for the homogeneous equation and a function with a smaller power of the exponential growth.
English version:
Journal of Mathematical Sciences, 2008, Volume 153, Issue 5, Pages 551–561
DOI: https://doi.org/10.1007/s10958-008-9136-x
Bibliographic databases:
UDC: 517.929
Language: Russian
Citation: D. A. Medvedev, “Asymptotic behavior of solutions of delay equations in Hilbert spaces”, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), CMFD, 21, PFUR, M., 2007, 77–86; Journal of Mathematical Sciences, 153:5 (2008), 551–561
Citation in format AMSBIB
\Bibitem{Med07}
\by D.~A.~Medvedev
\paper Asymptotic behavior of solutions of delay equations in Hilbert spaces
\inbook Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A.~L.~Skubachevskii (Peoples' Friendship University of Russia)
\serial CMFD
\yr 2007
\vol 21
\pages 77--86
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd78}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336492}
\zmath{https://zbmath.org/?q=an:1164.34041}
\elib{https://elibrary.ru/item.asp?id=13579785}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 153
\issue 5
\pages 551--561
\crossref{https://doi.org/10.1007/s10958-008-9136-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249090619}
Linking options:
  • https://www.mathnet.ru/eng/cmfd78
  • https://www.mathnet.ru/eng/cmfd/v21/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025