Abstract:
The paper proves the theorems on the continuous dependence of solutions when perturbations of the initial moment, the initial vector, the initial functions, the matrix coefficients, am the nonlinear summand in the right-hand side are small in the Euclidean and integral topologies, respectively.
Citation:
T. A. Tadumadze, N. Z. Gorgodze, I. V. Ramishvili, “On the Well-Posedness of the Cauchy Problem for Quasilinear Differential Equations of Neutral Type”, Optimal control, CMFD, 19, PFUR, M., 2006, 179–197; Journal of Mathematical Sciences, 151:6 (2008), 3611–3630
\Bibitem{TadGorRam06}
\by T.~A.~Tadumadze, N.~Z.~Gorgodze, I.~V.~Ramishvili
\paper On the Well-Posedness of the Cauchy Problem for Quasilinear Differential Equations of Neutral Type
\inbook Optimal control
\serial CMFD
\yr 2006
\vol 19
\pages 179--197
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd71}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336478}
\zmath{https://zbmath.org/?q=an:1168.34051}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 151
\issue 6
\pages 3611--3630
\crossref{https://doi.org/10.1007/s10958-008-9041-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49649115455}
Linking options:
https://www.mathnet.ru/eng/cmfd71
https://www.mathnet.ru/eng/cmfd/v19/p179
This publication is cited in the following 3 articles:
Gorgodze N., “Optimal Control of the Quasi-Linear Neutral Differential Equation”, Proceedings of the 6Th International Conference on Control and Optimization With Industrial Applications, Vol i, eds. Fikret A., Tamer B., Baku State Univ, Inst Applied Mathematics, 2018, 173–175
Nika Gorgodze, Ia Ramishvili, Tamaz Tadumadze, “Continuous dependence of a solution of a neutral functional differential equation on the right-hand side and initial data taking into account perturbations of variable delays”, Georgian Mathematical Journal, 23:4 (2016), 519
T. A. Tadumadze, “On the well-posedness of the Cauchy problem for a functional differential equation taking into account variable delay perturbation”, Journal of Mathematical Sciences, 218:6 (2016), 844–847