Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 19, Pages 131–170 (Mi cmfd69)  

This article is cited in 31 scientific papers (total in 31 papers)

Many-Dimensional Poincaré Construction and Singularities of Lifted Fields For Implicit Differential Equations

A. O. Remizov

University of Porto
References:
Abstract: The paper is devoted to singular points of the so-called lifted vector fields, which arise in studying systems of implicit differential equations by using the method of lifting the equation to a surface, a generalization of the construction used by Poincaré for a single implicit equation. The author study the phase portraits and renormal forms of such fields in a neighborhood of their singular points. In conclusion, the paper considers the lifted vectors fields generated by Euler–Lagrange and Euler–Poisson equations and fast-slow systems.
English version:
Journal of Mathematical Sciences, 2008, Volume 151, Issue 6, Pages 3561–3602
DOI: https://doi.org/10.1007/s10958-008-9043-1
Bibliographic databases:
UDC: 517.922
Language: Russian
Citation: A. O. Remizov, “Many-Dimensional Poincaré Construction and Singularities of Lifted Fields For Implicit Differential Equations”, Optimal control, CMFD, 19, PFUR, M., 2006, 131–170; Journal of Mathematical Sciences, 151:6 (2008), 3561–3602
Citation in format AMSBIB
\Bibitem{Rem06}
\by A.~O.~Remizov
\paper Many-Dimensional Poincar\'e Construction and Singularities of Lifted Fields For Implicit Differential Equations
\inbook Optimal control
\serial CMFD
\yr 2006
\vol 19
\pages 131--170
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd69}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336476}
\zmath{https://zbmath.org/?q=an:1190.34006}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 151
\issue 6
\pages 3561--3602
\crossref{https://doi.org/10.1007/s10958-008-9043-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49649128824}
Linking options:
  • https://www.mathnet.ru/eng/cmfd69
  • https://www.mathnet.ru/eng/cmfd/v19/p131
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024